
Software Escalation Prediction with Data Mining

Tilmann Bruckhaus
Customer Network Services

Sun Microsystems, Inc.
USCA22-104, 4220 Network Circle

Santa Clara, CA 95054
Tilmann.Bruckhaus@Sun.Com

Charles X. Ling, Nazim H. Madhavji, Shengli Sheng
Department of Computer Science

University of Western Ontario
London, Ontario N6A 5B7, Canada

{cling, madhavji, ssheng}@csd.uwo.ca

Abstract

One of the most severe manifestations of poor
quality of software products occurs when a customer
“escalates” a defect: an escalation is triggered when a
defect significantly impacts a customer's operations.
Escalated defects are then quickly resolved, at a high
cost, outside of the general product release
engineering cycle. While the software vendor and its
customers often detect and report defects before they
are escalated it is not always possible to quickly and
accurately prioritize reported defects for resolution. As
a result, even previously known defects, in addition to
newly discovered defects, are often escalated by
customers. Labor cost of escalations from known
defects to a software vendor can amount to millions of
dollars per year. The total costs to the vendor are even
greater, including loss of reputation, satisfaction,
loyalty, and repeat revenue. The objective of
Escalation Prediction (EP) is to avoid escalations from
known product defects by predicting and proactively
resolving those known defects that have the highest
escalation risk. This short paper outlines the business
case for EP, an analysis of the business problem, the
solution architecture, and some preliminary validation
results on the effectiveness of EP.

1. Introduction

Escalations of software products occur when1 a
customer service case is “escalated to a local manager,
Customer Service Manager (CSM), or designee”, when
“customer situations require management attention,
continuous effort, and have an existing action plan
which provides customer relief”, or in case of “Critical

1

Sun internal documentation

situations which have substantial business or financial
impact to [the vendor] or the customer.” Product
defect escalations are costly to the vendor as well as
the customer, and associated labor costs can amount to
millions of dollars each year. In addition, product
defect escalations generally result in loss of reputation,
satisfaction, loyalty and repeat revenue.

The objective of Escalation Prediction (EP) is to
avoid such escalations from known product defects
using data mining technology [1, 2]. If a software
vendor can accurately predict the escalation risk of
known defects, escalations can be prevented by fixing
high-risk defects before customers escalate them.
Accuracy, precision and recall are the common
measures of assessing the performance of a prediction
model. To some extent, they reflect the return on
investment (ROI) of fixing predicted escalations. For a
given predictive model, one can use historical data,
known as a “hold-out data set” [3], to measure
precision as the ratio of predicted escalations which in
fact were escalated, and recall as the ratio of actual
escalations that were predicted by the model. If we
assume that an escalation has a specific cost X whereas
fixing a defect has another, smaller, cost Y, we can
express the “net profit”, or the ROI in terms of
precision and recall, and find their optimal values to
maximize ROI.

2. Solution Architecture

The diagram (refer to Figure 1) illustrates the
Escalation Prediction Solution Architecture. Data is
captured periodically from the vendor’s Online
Transaction Processing (OLTP) systems providing
defect and escalation information. Data is captured
weekly and stored indefinitely in a datamart. While the
information in the OLTP systems continues to change
from moment to moment, the weekly snapshots in the

datamart remain constant so as to provide the historical
data required for training predictive models.

Figure 1.

The historical snapshot data is then augmented

within the SPSS Clementine data-mining tool. Derived
fields, historical information, and statistics are added to
yield the set of available input fields: 1) data fields
which come directly from the defect tracking system
(e.g., priority, hardware platform, and customer
company), 2) fields which are derived from individual
source records (e.g., the source fields “user type” and
“user role” are concatenated to derive “user type and
role”), 3) fields capturing the history of bugs (e.g., a
field containing the sequence states of the bug over the
last 12 weeks), 4) escalation statistics for previous time
periods (e.g., the percentage of bugs escalated by each
customer company during the previous fiscal quarter),
and 5) unsupervised learning techniques are used to
cluster the data, and the resulting cluster membership
data is available as additional inputs for modeling.

The next step is to train and validate predictive
models. Training involves selecting a subset from
among about 200 possible input variables, and setting
up rule induction or neural network training parameters
[4, 5] in Clementine. Generated models are then
validated against historical data. The available data is
split into two disjoint sets for training and validation so
that the validation of the model is performed only
against defects the model “has not seen” [6].

Once one or more satisfactory models have been
found the most appropriate model is selected and run
against the most recent snapshot of defect data. The

predicted escalations are then reported to the product
group for evaluation and proactive resolution.

The product group provides feedback to allow for
ongoing improvement of the overall escalation
prediction and prevention effort. Results of the overall
program are also tracked in terms of actual precision
and recall, as well as run rates of escalations from
known defects.

3. Preliminary Results

The following charts show validation results. Our
goal was to assess whether our models could predict
escalation risk accurately so that bugs that were later
escalated would receive high-risk scores. The EP
model used here is based on neural networks. The data
used for validation is historical data with known results
from the live product development process from
9/15/2003 to 10/13/2003.

Figure 2.

Figure 3.

Figure 2 shows the three-trailing-months average of
Escalations from Known Defects against one large
software product. The run rate ranges from 14 to 18
per month. This chart will be used to track the run rate
of escalations from known defects over time. Our goal
is to prevent such escalations, and to push the trend
line as close to zero as we can. So far, this chart does
not show evidence of run rate reduction because the
product group has piloted EP for just one month.

Figure 3 shows validation results from an EP run.
One of the outputs of the model is the “confidence” the
model has in predicting that a given defect will be
escalated. In essence, confidence translates into an
“escalation risk level” assigned by the model. If the
model works as desired, then defects with greater risk
level will have a greater probability of becoming
escalated. The histogram shows the risk level assigned
to defects on the X axis, and on the y axis it shows the
proportion of escalated vs. not escalated defects.
Escalations are shown in dark gray and non-escalations
in light gray. As the chart shows, the EP model
successfully sorted defects, which later became
escalated into the high end of the 'confidence' or EP
Risk Level.

Based on the above information, we can calculate
the probability of an escalation based on the risk level.
To do so, we divide the number of escalations by the
number of defects at each risk level. We consider
probabilities of escalations for defects, which have “at
least a given risk level”, rather than for only defects
“exactly a given risk level”. This approach allows us to
more easily see the trend of escalation probability with
increasing risk level.

Figure 4.

Figure 4 shows that risk level 9 defects have a

greater than 70% probability of becoming escalated.

Escalation probabilities decline with declining risk
level, to 60% for “risk level 6 and greater”, 40% for
risk level 5 and greater, 20% for risk level 4 and
greater, and finally 1% for risk level 0 and greater.
“Risk level 0 and greater” effectively means “overall
escalation probability, independent of risk level”. This
figure is a quantitative assessment of how Escalation
Prediction allows the vendor to focus on the “vital
few” while expending less energy on the “trivial
many”.

4. Conclusions

In this short paper, we have made a business case
for predicting and preventing escalations from known
product defects. While the labor cost of escalations
from known product defects is significant, the total
cost is even greater, including loss of image, customer
satisfaction, loyalty and repeat revenue. By applying
predictive technologies that have been used
successfully to similar problems in the financial
services industry software vendors can proactively
resolve known product defects with the greatest risk of
escalation. An escalation prediction solution has been
set up and tested, and is currently deployed at Sun. The
solution has been deployed for only a small number of
weeks. Preliminary results provide evidence that we
can indeed predict escalations. We plan to continue to
improve the effectiveness of the program and track its
results.

5. References

[1] M.J.A. Berry and G. Linoff, Data Mining Techniques:
For Marketing, Sales, and Customer Support, John Wiley &
Sons, 1997.

[2] H. Dai (editor), Proceedings of The International
Workshop on Data Mining for Software Engineering and
Knowledge Engineering, 2003.

[3] T. Mitchell. Machine Learning, McGraw Hill, 1997.

[4] C.M. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press. 1995.

[5] M. Smith, Neural Networks for Statistical Modeling, Van
Nostrand Reinhold, 1993.

[6] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R.
Uthurusamy (editors), Advances in Knowledge Discovery
and Data Mining, AAAI/MIT Press, 1996.

	1. Introduction
	2. Solution Architecture
	3. Preliminary Results
	4. Conclusions
	5. References

