
Chapter 4

With Question/Answer Animations



Chapter Motivation
 Number theory is the part of mathematics devoted to the study 

of the integers and their properties. 

 Key ideas in number theory include divisibility and the primality
of integers.

 Representations of integers, including binary and hexadecimal 
representations, are part of number theory. 

 Number theory has long been studied because of the beauty of 
its ideas, its accessibility, and its wealth of open questions. 

 We’ll use many ideas developed in Chapter 1 about proof 
methods and proof strategy in our exploration of number theory.

 Mathematicians have long considered number theory to be pure 
mathematics, but it has important applications to computer 
science and cryptography studied in Sections 4.5 and 4.6.



Chapter Summary
 Divisibility and Modular Arithmetic

 Integer Representations and Algorithms 

 Primes and Greatest Common Divisors

 Solving Congruences

 Applications of Congruences

 Cryptography



Section 4.1



Section Summary
 Division 

 Division Algorithm 

 Modular Arithmetic



Division
Definition: If a and b are integers with a ≠ 0, then       
a divides b if there exists an integer c such that  b = ac.

 When a divides b we say that a is a factor or divisor of b
and that b is a multiple of a.

 The notation a | b denotes that a divides b.

 If a | b, then b/a is an integer.

 If a does not divide b, we write a ∤ b.

Example: Determine whether 3 | 7

and whether 3 | 12.



Properties of Divisibility
Theorem 1: Let a, b, and c be integers, where a ≠0. 

i. If a | b and a | c, then a | (b + c);
ii. If a | b, then a | bc for all integers c;
iii. If a | b and b | c, then a | c.

Proof: (i)  Suppose a | b and a | c, then it follows that there are 
integers s and t with b = as and c = at. Hence,

b + c = as + at = a(s + t).    Hence,  a | (b + c)

(parts (ii) and  (iii)can be proven similarly) 

Corollary: If a, b, and c be integers, where a≠0, such that a | b
and a | c, then a | mb + nc for any integers m and n. 

Can you show how it follows easily from  from (ii) and (i) of Theorem 1?



Division Algorithm
 When an integer is divided by a positive integer, there is a quotient and a remainder.

Theorem (“Division Algorithm”): If a is an integer and d a positive integer, then 
there are unique integers q and r with 0 ≤ r < d, such that  a = dq + r (proved in Section 5.2).

 a is called the dividend.
 d is called the divisor.
 q is called the quotient.      
 r is called the remainder.

Examples:  
 What are the quotient and remainder when 101 is divided by 11?

Solution: The quotient is   9 = 101 div 11 and the remainder is     2 = 101 mod 11. 

 What are the quotient and remainder when 11 is divided by 3?
Solution: The quotient is   3 = 11 div 3 and the remainder is    2 = 11 mod 3.

 What are the quotient and remainder when −11 is divided by 3?
Solution: The quotient is    −4 = −11 div 3 and the remainder is    1 = −11 mod 3.

Definitions of Functions  
div and mod

q = a div d
r = a mod d

a   =   d ∙ (a div d) +  (a mod d) 
quotient remainder



Congruence Relation
Definition: If a and b are integers and m is a positive integer, then a is 
congruent to b modulo m if     m   divides    a – b.

 The notation a  ≡ b (mod m) says  that a is congruent to b modulo m.  
 We say that a  ≡ b (mod m) is a congruence and that m is its modulus.
 Two integers are congruent mod m if and only if they have 

the same remainder when divided by m.     (Theorem 3 later)
 If a is not congruent to b modulo m, we write a ≢ b (mod m)

Example: Determine whether 17 is congruent to 5 modulo 6 and 
whether 24 and 14 are congruent modulo 6.

Solution: 
 17 ≡ 5 (mod 6) because 6 divides 17 − 5 = 12. 
 24 ≢ 14 (mod 6) since 24 − 14 = 10  is not divisible by 6.



More on Congruences
Theorem 4: Let m be a positive integer.   The integers 
a and b are congruent modulo m if and only if  

there is an integer k such that a = b + km.

Proof: 

 If a  ≡ b (mod m), then (by the definition of 
congruence)  m | a – b. Hence, there is an integer k such 
that a – b = km and equivalently a = b + km.

 Conversely, if there is an integer k such that a = b + km, 
then km = a – b. Hence, m | a – b and a  ≡ b (mod m).



The Relationship between         
(mod m) and mod m Notations

 The use of “mod” in a  ≡ b (mod m) is different from 
its use in a = b mod m.

 a  ≡ b (mod m)    - mod relates (two) sets of integers.

 a  = b mod m - here mod denotes a function.

 The relationship/differences between these is clarifies below:

Theorem 3: Let a and b be integers, and let m be a positive 
integer. Then    a ≡ b (mod m)   if and only if        

a mod m  =  b mod m.             (proof - home exercise)



Congruences of Sums and Products
Theorem 5: Let m be a positive integer. If  a  ≡ b (mod m) and   
c  ≡ d (mod m), then

a + c  ≡ b + d (mod m)     and       ac  ≡ bd (mod m) 

Proof: 
 Because a  ≡ b (mod m)  and c  ≡ d (mod m), by Theorem 4 there 

are integers s and t with  b = a + sm and  d = c + tm.
 Therefore,  

 b + d = (a  + sm) + (c + tm) = (a + c) + m(s + t) and
 b d = (a  + sm) (c + tm) = ac + m(at + cs + stm).

 Hence, a + c  ≡ b + d (mod m) and ac  ≡ bd (mod m). 

Example: Because 7 ≡ 2 (mod 5) and  11 ≡ 1 (mod 5) , it 
follows from Theorem 5 that

18 = 7 + 11 ≡ 2 + 1 = 3 (mod 5)  
77 = 7  ∙  11 ≡ 2  ∙ 1 = 2 (mod 5)



Algebraic Manipulation of Congruences
 Multiplying both sides of a valid congruence by an integer preserves validity. 

If  a  ≡ b (mod m) holds then c∙a ≡ c∙b (mod m), where c is any integer, holds 
by Theorem 5 with d = c.

 Adding an integer to both sides of a valid congruence preserves validity.

If  a  ≡ b (mod m) holds then c + a  ≡ c + b (mod m), where c is any integer, 
holds by Theorem 5 with d = c.

 NOTE: dividing a congruence by an integer may not produce a valid congruence.

Example: The congruence 14 ≡ 8 (mod 6) holds. Dividing both sides by 2 
gives invalid congruence since  14/2 = 7  and  8/2 = 4,  but  7≢4 (mod 6). 
See Section 4.3 for conditions when division is ok.



Computing the mod m Function of 
Products and Sums
 We use the  following corollary to Theorem 5  to  compute the 

remainder of the product or sum of two integers when divided 
by m from the remainders when each is divided by m.

Corollary: Let m be a positive integer and let a and b be 
integers. Then

(a + b) mod m =  ((a mod m) + (b mod m)) mod m

and

ab mod m =   ((a mod m) (b mod m)) mod m. 

(proof  in text)



Arithmetic Modulo m
Definitions: Let        Zm =  {0,1, …., m−1}

be the set of nonnegative integers less than m. Assume a,b  Zm .

 The operation +m is defined as    a +m b = (a + b) mod m. 
This is addition modulo m.

 The operation ∙m is defined as      a ∙m b = (a ∙ b) mod m.   
This is multiplication modulo m.

 Using these operations is said to be doing arithmetic modulo m.

Example: Find 7 +11 9 and 7 ∙11 9.

Solution: Using the definitions above:
 7 +11 9   =   (7 + 9)  mod 11   =   16 mod 11  =  5

 7 ∙11 9   =   (7 ∙ 9)  mod 11   =   63 mod 11  =  8



Arithmetic Modulo m
 The operations +m and  ∙m    satisfy many of the same properties as 

ordinary addition and multiplication.

 Closure: If a and b belong to Zm , then a +m b and a ∙m b belong to Zm .
 Associativity: If a, b, and c belong to Zm , then                                                                                       

(a +m b) +m c  = a +m (b +m c) and (a ∙m b) ∙m  c  = a ∙m (b ∙m c).
 Commutativity: If a and b belong to Zm , then                                                                                          

a +m b  = b +m a and a ∙m b  = b ∙m a.
 Identity elements: The elements 0 and 1 are identity elements for 

addition and multiplication modulo m, respectively.
 If a belongs to  Zm , then a +m 0 = a and a ∙m 1 = a.

continued →



Arithmetic Modulo m
 Additive inverses: If a≠ 0 belongs to  Zm , then m− a is the additive 

inverse of a modulo m and 0 is its own additive inverse.  

a +m (m− a ) = 0 and        0 +m 0 = 0

 Distributivity: If a, b, and c belong to Zm , then 

a ∙m (b +m c) = (a ∙m b) +m (a ∙m c) and                                               
(a +m b) ∙m  c  = (a ∙m c) +m (b ∙m c)

 Multiplicatative inverses have not been included since they do not always 
exist. For example, there is no multiplicative inverse of 2 modulo 6, i.e.

2 ∙m a ≠  1 for any a  Z6

 (optional) Using the terminology of  abstract algebra,  Zm with +m is a 
commutative group and  Zm with +m and ∙m is a commutative ring.  



Section 4.2



Section Summary

 Integer Representations

 Base b Expansions

 Binary Expansions

 Octal Expansions

 Hexadecimal Expansions

 Base Conversion Algorithm

 Algorithms for Integer Operations



Representations of Integers
 In the modern world, we use decimal, or base 10,

notation to represent integers. For example when we 
write 965, we mean 9∙102 + 6∙101 + 5∙100 . 

 We  can represent numbers using any base b, where b
is a positive integer greater than 1.

 The bases b = 2 (binary), b = 8 (octal) , and b= 16
(hexadecimal) are important for computing and 
communications

 The ancient Mayans used base 20 and the ancient 
Babylonians used base 60.



Base b Representations
 We can use positive integer b greater than 1 as a base, because of 

this theorem:
Theorem 1: Let b be a positive integer greater than 1. Then if n
is a positive integer, it can be expressed uniquely in the form:

n =   ak bk + ak-1 b
k-1 + …. + a1 b + a0

where k is a nonnegative integer, a0,a1,…. ak are nonnegative 
integers less than b, and ak≠ 0. The aj, j = 0,…,k are called the 
base-b digits of the representation.

(We will prove this using mathematical induction in Section 5.1.)

 The representation of n given in Theorem 1 is called 
the base b expansion of n and is denoted by (akak-1….a1a0)b.

 We usually omit the  subscript 10 for base 10 expansions.



Binary Expansions
Most computers represent integers and do arithmetic with 
binary  (base 2) expansions of integers. In these 
expansions, the only digits used are 0 and 1.

Example: What is the decimal expansion of  the integer that 
has (1 0101 1111)2 as its binary expansion?

Solution:

(1 0101 1111)2    = 1∙28 + 0∙27 + 1∙26 + 0∙25 + 1∙24 + 1∙23 

+ 1∙22 + 1∙21 + 1∙20 =351. 

Example: What is the decimal expansion of  the integer that 
has  (11011)2 as its binary expansion?

Solution: (11011)2 = 1 ∙24 + 1∙23 + 0∙22 + 1∙21 + 1∙20 =27. 



Octal Expansions
The octal expansion (base 8) uses the digits 
{0,1,2,3,4,5,6,7}.

Example: What is the decimal expansion of the 
number with octal expansion (7016)8 ?

Solution: 7∙83 + 0∙82 + 1∙81 + 6∙80 =3598

Example: What is the decimal expansion of the 
number with octal expansion (111)8 ?

Solution: 1∙82 + 1∙81 + 1∙80 = 64 + 8 + 1 = 73



Hexadecimal Expansions
The hexadecimal expansion needs 16 digits, but our decimal 
system provides only 10. So letters are used for the additional 
symbols.  The hexadecimal system uses the digits 
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. The letters A through F 
represent the decimal numbers 10 through 15.

Example: What is the decimal expansion of the number with 
hexadecimal expansion (2AE0B)16 ?
Solution: 
2∙164 + 10∙163 + 14∙162 + 0∙161 + 11∙160 =175627

Example: What is the decimal expansion of the number with 
hexadecimal expansion (1E5)16 ?
Solution: 1∙162 + 14∙161 + 5∙160 = 256 + 224 + 5 = 485



Base Conversion
To construct the base b expansion of an integer n  (in base 10):

 Divide n by b to obtain a quotient and remainder.

n = bq0 + a0    0 ≤ a0 ≤ b

 The remainder, a0 , is the rightmost digit in the base b
expansion of n. Next, divide q0 by b.

q0 = bq1 + a1    0 ≤ a1 ≤ b

 The remainder, a1, is the second digit from the right in the base 
b expansion of n.

 Continue by successively dividing the quotients by b, obtaining 
the additional base b digits as the remainder. The process 
terminates when the quotient is 0.

continued →



Algorithm: Constructing Base b Expansions

 q represents the quotient obtained by successive divisions 
by b, starting with q = n.

 The digits in the base b expansion are the remainders of the 
division given by q mod b.

 The algorithm terminates when q = 0 is reached.

procedure base b expansion(n, b: positive integers with b > 1)
q := n
k := 0
while (q ≠ 0)

ak := q mod b
q := q div b
k := k + 1

return (ak-1 ,…, a1,a0)      {(ak-1 … a1a0)b is base b expansion of n}



Base Conversion
Example: Find the octal expansion of (12345)10

Solution:  Successively dividing by 8 gives:

 12345 = 8 ∙ 1543 + 1

 1543 = 8 ∙ 192 + 7

 192 = 8 ∙ 24 + 0

 24 = 8 ∙ 3 + 0

 3 = 8 ∙ 0 + 3

The remainders are the digits from right to left   
yielding  (30071)8.



Comparison of Hexadecimal, Octal, 
and Binary Representations

Each octal digit corresponds to a block of 3 binary digits.
Each hexadecimal digit corresponds to a block of 4 binary digits. 
So, conversion between binary, octal, and hexadecimal is easy.

Initial 0s are not shown



Conversion Between Binary, Octal, 
and Hexadecimal Expansions

Example: Find the octal and hexadecimal expansions of 
(11111010111100)2.

Solution: 
 To convert to octal, we group the digits into blocks of three 

(011  111  010  111  100)2, adding initial 0s as needed. The 
blocks from left to right correspond to the digits 3,7,2,7, 
and 4. Hence, the solution is (37274)8.

 To convert to hexadecimal, we group the digits into blocks 
of four (0011  1110  1011  1100)2, adding initial 0s as 
needed. The blocks from left to right correspond to the 
digits 3,E,B, and C. Hence, the solution is (3EBC)16.



Binary Addition of Integers
 Algorithms for performing operations with integers using 

their binary expansions are important as computer chips 
work with binary numbers. Each digit is called a bit.

 The number of additions of bits used by the algorithm to 
add two n-bit integers is O(n).

procedure add(a, b: positive integers)

{the binary expansions of a and b are (an-1,an-2,…,a0)2 and (bn-1,bn-2,…,b0)2, respectively}

cprev := 0    (represents carry from the previous bit addition)

for  j := 0 to n − 1
c := ⌊(aj + bj + cprev)/2⌋ - quotient  (carry for the next digit of the sum)

sj := aj + bj + cprev − 2 c - remainder  (j-th digit of the sum)

cprev := c
sn := c

return (sn , … ,s1, s0)    {the binary expansion of the sum is (sn,sn-1,…,s0)2}

a0 + b0                  =    c0 ∙2 + s0 

a1 + b1   + c0 =    c1 ∙2 + s1 

aj + bj + cj-1 =    cj ∙2 + sj

…



Binary Multiplication of Integers

 Algorithm for computing the product of two n bit integers.

 The number of additions of bits used by the algorithm to 
multiply two n-bit integers is O(n2).

procedure multiply(a, b: positive integers)
{the binary expansions of a and b are (an-1,an-2,…,a0)2 and (bn-1,bn-2,…,b0)2, respectively}
for  j := 0 to n − 1

if bj = 1 then cj = a shifted j places
else cj := 0

{co,c1,…, cn-1 are the partial products}
p := 0

for  j := 0 to n − 1
p := p + cj

return p {p is the value of ab}

110      - a
x    101      - b
--------

1 1 0   - ab0

000     - ab1

1 1 0       - ab2

a ∙ b     =    a ∙ (bk 2k + bk-1 2
k-1 + …. + b1 2 + b0 ) = a bk 2k + a bk-1 2

k-1 + …. + a b1 2 + a b0

shift by k shift by k-1 shift



Section 4.3



Section Summary

 Prime Numbers and their Properties

 Conjectures and Open Problems About Primes

 Greatest Common Divisors and Least Common Multiples

 The Euclidian Algorithm

 gcd(s) as Linear Combinations

 Relative primes



Primes
Definition: A positive integer p greater than 1 is called 
prime if the only positive factors of p are 1 and p. 

A positive integer that is greater than 1 and is not prime 
is called composite.

Example:  The integer 7 is prime because its only 
positive factors are 1 and 7, but 9 is composite because 
it is divisible by 3. 



The Fundamental Theorem of 
Arithmetic     (prime factorization)

Theorem: Every positive integer greater than 1 can be 
written uniquely as a prime or as the product of two or 
more primes where the prime factors are written in 
order of nondecreasing size. 

Examples:

 100 = 2 ∙ 2 ∙ 5 ∙ 5 = 22 ∙ 52

 641 = 641

 999 = 3 ∙ 3 ∙ 3 ∙ 37 = 33 ∙ 37 

 1024 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 = 210



The Sieve of Erastosthenes

Erastothenes
(276-194 B.C.)

 The Sieve of Erastosthenes can be used to find all primes not 
exceeding a specified positive integer. 

 For example, consider the list of integers between 1 and 100:

a. Delete all  the integers, other than 2, divisible by 2.

b. Delete all the integers, other than 3, divisible by 3.

c. Next, delete all the integers, other than 5, divisible by 5.

d. Next, delete all the integers, other than 7, divisible by 7.

all remaining numbers between 1 and 100 are prime:

{2,3,7,11,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89, 97}

continued →Why does this work?



The Sieve of Erastosthenes
If an integer n is a composite 
integer, then it must have a prime 
divisor less than or equal to √n.

To see this, note that if n = ab, 
then a ≤ √n or   b ≤√n.

For  n=100 √n=10, thus any 
composite integer   100  must 
have prime factors less than 10, 
that is 2,3,5,7. The remaining  
integers   100  are prime.

Trial division, a very inefficient 
method of determining if a 
number n is prime, is to try every 
integer i ≤√n and see if  n is 
divisible by i. 



Infinitude of Primes
Theorem: There are infinitely many primes. 

Proof:  Assume finitely many primes:  p1, p2, ….., pn

 Let q = p1p2∙∙∙ pn + 1

 Either q is prime or by the fundamental theorem of arithmetic it is a 
product of primes. 

 But none of the primes pj divides q since if  pj | q, then pj divides         
q − p1p2∙∙∙ pn =  1 (contradiction to divisibility by pj ).

 Hence, there is a prime not on the list p1, p2, ….., pn. It is either q, or if q is 
composite, it is a prime factor of q. This contradicts the assumption that  
p1, p2, ….., pn are all the primes. 

 Consequently, there are infinitely many primes.

Euclid 
(325 B.C.E. – 265 B.C.E.)

This proof was given by Euclid  The Elements. The proof is considered to be one of the most 
beautiful in all  mathematics.  It is  the first proof in The Book, inspired by the famous 
mathematician Paul Erdős’ imagined collection of perfect proofs maintained by God.

Paul  Erdős
(1913-1996) 



Generating Primes
 The problem of generating large primes is of both theoretical 

and practical interest.
 Finding large primes with hundreds of digits is important in 

cryptography.
 So far, no useful closed formula that always produces primes

has been found. There is no simple  function f(n) such that f(n) 
is prime for all positive integers n. 

 f(n) = n2 − n + 41 is prime for all integers 1,2,…, 40. Because of 
this, we might conjecture that f(n) is prime for all positive 
integers n. But f(41) = 412 is not prime. 

 More generally, there is  no polynomial with integer coefficients 
such that  f(n) is prime for all positive integers n. 

 Fortunately, we can generate large integers which are almost 
certainly primes. 



Mersenne Primes
Definition: Prime numbers of the form 2p − 1 , where p is 
prime, are called Mersenne primes.
 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 37 , and 27 − 1 = 127  are 

Mersenne primes.
 211 − 1 = 2047 is not a Mersenne prime since 2047 = 23∙89.
 There is an efficient test for determining if 2p − 1 is prime.
 The largest known prime numbers are Mersenne primes.
 On December 26 2017, 50-th Mersenne primes was found, it is 

277,232,917 − 1, which is the largest Marsenne prime known. It has 
more than 23 million decimal digits.

 The Great Internet Mersenne Prime Search (GIMPS) is a distributed 
computing project to search  for new Mersenne Primes.

http://www.mersenne.org/

Marin Mersenne
(1588-1648)

http://www.mersenne.org/


Conjectures about Primes
 Even though primes have been studied extensively for centuries, 

many conjectures about them are unresolved, including:
 Goldbach’s Conjecture: Every even integer n, n > 2, is the sum of 

two primes. It has been verified  by computer for all positive 
even integers up to  1.6 ∙1018.  The conjecture is believed to be 
true by most mathematicians.

 There are infinitely many primes of the form n2 + 1, where n is a 
positive integer. But it has been shown that there are infinitely 
many primes  of the form n2 + 1 which are the product of at most 
two primes.

 The Twin Prime Conjecture: there are infinitely many pairs of 
twin primes. Twin primes are pairs of primes that differ by 2. 
Examples are 3 and 5, 5 and 7, 11 and 13, etc. The current 
world’s record for twin primes (as of mid 2011) consists of 
numbers   65,516,468,355∙2333,333 ±1, which have 100,355 
decimal digits.



Greatest Common Divisor (gcd)
Definition: Let a and b be integers, not both zero. The largest 
integer d such that d | a and also d | b is called the greatest 
common divisor of a and b. The  greatest common divisor of a 
and b is denoted by gcd(a,b).

One can find greatest common divisors of small numbers by 
inspection.

Example: What is the greatest common divisor of 24 and 36? 

Solution: gcd(24,26) = 12

Example:What is the greatest common divisor of 17 and 22?

Solution: gcd(17,22) = 1

From primes to relative primes



Greatest Common Divisor (gcd)
Definition: The integers a and b are relatively prime if their 
greatest common divisor is  gcd(a,b) = 1. 

Example: 17 and 22

Definition: The integers a1, a2, …, an are pairwise relatively prime if 
gcd(ai, aj)= 1 whenever 1 ≤ i<j ≤n.

Example: Determine whether the integers 10, 17 and 21 are pairwise
relatively prime.
Solution: Because gcd(10,17) = 1, gcd(10,21) = 1, and gcd(17,21) = 1, 
10, 17, and 21 are pairwise relatively prime.

Example: Determine whether the integers 10, 19, and 24 are pairwise
relatively prime.

Solution: No, since gcd(10,24) = 2.

From primes to relative primes



Finding the Greatest Common Divisor 
Using Prime Factorizations
 Suppose that (unique) prime factorizations of a and b are:

where each exponent is a nonnegative integer, and where all primes 
occurring in either prime factorization are included in both. Then:

 This formula is valid since the integer  on the right (of the equals sign) 
divides both a and b. No larger integer can divide both a and b. 

Example:    120 =  23 ∙3 ∙5      500 =  22 ∙53

gcd(120,500) = 2min(3,2) ∙3min(1,0) ∙5min(1,3) = 22 ∙30 ∙51 = 20

 NOTE: finding the gcd of two positive integers using their prime 
factorizations is not efficient because there is no efficient algorithm for 
finding the prime factorization of a positive integer.



Least Common Multiple (lcm)
Definition: The least common multiple of the positive integers a and b 
is the smallest  positive integer that is divisible by both a and b. It is 
denoted by lcm(a,b).

 The least common multiple can also be computed from the prime 
factorizations. 

This number is divided by both a and b and no smaller number  is 
divided by a and b.

Example:  lcm(233572, 2433) = 2max(3,4) 3max(5,3) 7max(2,0) = 24 35 72

 The greatest common divisor (gcd) and the least common multiple (lcm) 
of two integers are related by:
Theorem 5: Let a and b be positive integers. Then

a ∙ b =    gcd(a,b) ∙ lcm(a,b)



Euclidean Algorithm
 The Euclidian algorithm is an efficient method for  

computing the greatest common divisor of two integers.    
It is based on the idea that   gcd(a,b)  =  gcd(b,r)   when       
a > b and r is the remainder when a is divided by b.

( indeed, since  a = bq + r,  then   r = a – b q.  Thus, if  d|a and  d|b then  d|r)

Example: Find  gcd(287,91):
 287 = 91 ∙ 3 + 14

 91 = 14 ∙ 6 + 7

 14 =  7 ∙ 2 + 0

gcd(287, 91) = gcd(91, 14) =  gcd(14, 7) = gcd(7, 0) = 7

Euclid 
(325 B.C.E. – 265 B.C.E.)

Stopping 
condition

Divide 287 by 91

Divide 91 by 14

Divide 14 by 7

continued →



Euclidean Algorithm
 The Euclidean algorithm expressed in pseudocode is:

 Note: the time complexity of the algorithm is 
O(log b), where a > b. 

procedure gcd(a, b: positive integers, WLOG assume a>b)
x := a
y := b
while   y ≠ 0

r := x mod y
x := y
y := r

return x {gcd(a,b) is x}



Correctness of Euclidean Algorithm 
Lemma 1: Let   r = a mod b,   where a b > r are 
integers.   Then   gcd(a,b) = gcd(b,r).

Proof:

 Any divisor or a and b must also be a divisor of r since     
a = b q +r   (for  quotient  q = a div b)   and r = a – b q. 

 Therefore, gcd(a,b) = gcd(b,r).



Correctness of Euclidean Algorithm 
 Suppose that a and b are positive 

integers  with a ≥ b. 
Let r0 = a and r1 = b. 
Successive applications of the division 
algorithm   yields:

 Eventually, a remainder of zero occurs in the sequence of terms:  a = r0 > r1 > r2 > ∙ ∙ ∙  ≥ 0.   
The sequence can’t contain more than a terms.

 By Lemma 1 
gcd(a,b) = gcd(r0,r1) = ∙ ∙ ∙ = gcd(rn-1,rn) = gcd(rn , 0) = rn.

 Hence the gcd is the last nonzero remainder in the sequence of divisions.

r0 = r1q1 + r2 0 ≤ r2 < r1 ≤ r0,
r1 = r2q2 + r3 0 ≤ r3 < r2,

∙
∙
∙

rn-2 = rn-1qn-1 + rn 0 ≤ rn < rn-1,
rn-1 = rnqn .

gcd



gcd(s) as Linear Combinations
Bézout’s Theorem: If a and b are positive integers, then there 
exist integers s and t such that     gcd(a,b) = sa + tb. 

Definition: If a and b are positive integers, then integers s and t
such that  gcd(a,b) = sa + tb are called Bézout coefficients of a
and b. The equation  gcd(a,b) = sa + tb is called Bézout’s
identity. 

Expression  sa + tb is a linear combination of a and b with 
coefficients of s and t.

Example:   gcd(6,14) =  2 =   (−2)∙6 + 1∙14 

Étienne Bézout
(1730-1783)



Finding gcd(s) as Linear Combinations
Example: Express gcd(252,198) = 18 as a linear combination of 252 and 198.

Solution: First use the Euclidean algorithm to show gcd(252,198) = 18

i. 252 = 1∙198 + 54

ii. 198 = 3 ∙54 + 36

iii. 54 = 1 ∙36 + 18

iv. 36 = 2 ∙18 

 Working backwards, from  iii and i above 

18 = 54 −  1 ∙36 

36 = 198 −  3 ∙54 

 Substituting the 2nd equation into the 1st yields:

18 = 54 −  1 ∙(198 −  3 ∙54 )= 4 ∙54 −  1 ∙198 

 Substituting 54 = 252 −  1 ∙198 (from i)) yields:

18 = 4 ∙(252 −  1 ∙198) −  1 ∙198 = 4 ∙252 −  5 ∙198 

This method illustrated above is a two pass method. It first uses the Euclidian algorithm to find the gcd
and then works backwards to express the gcd as a linear combination of the original two integers.             
A one pass method, called the extended Euclidean algorithm, is developed in the exercises.



Consequences of Bézout’s Theorem
Lemma 2: If a, b, c are positive integers such that a and b are relatively 
prime (gcd(a, b) = 1)   and   a | bc then  a | c.

Proof:  Assume gcd(a, b) = 1 and a | bc

 Since gcd(a, b) = 1, by Bézout’s Theorem  there are integers s and t such that    
sa + tb = 1.

 Multiplying both sides of the equation by c, yields sac + tbc = c.

 From Theorem 1 of Section 4.1:
a | bc implies a | tbc   (part ii). Since a | sac then a divides sac + tbc   (part i).

We conclude a | c, since sac + tbc = c.

A generalization of Lemma 2 below is important for proving uniqueness of  prime factorization:

Lemma 3: If p is prime and p | a1 a2 … an where ai are integers then  p | ai for some i.



Dividing Congruences by an Integer
 Dividing both sides of a valid congruence by an integer 

does not always produce a valid congruence (see Section 4.1).

 But dividing by an integer relatively prime to the modulus 
does produce a valid congruence: 

Theorem 7: Let m be a positive integer and let a, b, and c
be integers. If gcd(c,m) = 1 and  ac ≡ bc (mod m),  then 

a ≡ b (mod m).

Proof: Since ac ≡ bc (mod m), m | ac − bc = c(a − b)   by 
Lemma 2 and the fact that  gcd(c,m) = 1, it follows that   
m | a − b. Hence, a ≡ b (mod m).

NOTE: can always divide congruency by any prime number  p>√m since  gcd(p,m) = 1


