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Chapter Motivation

Number theory is the part of mathematics devoted to the study
of the integers and their properties.

Key ideas in number theory include divisibility and the primality
of integers.

Representations of integers, including binary and hexadecimal
representations, are part of number theory.

Number theory has long been studied because of the beauty of
its ideas, its accessibility, and its wealth of open questions.

We’'ll use many ideas developed in Chapter 1 about proof
methods and proof strategy in our exploration of number theory.

Mathematicians have long considered number theory to be pure
mathematics, but it has important applications to computer
science and cryptography studied in Sections 4.5 and 4.6.
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Division
Definition: If a and b are integers with a # 0, then

a divides b if there exists an integer c such that b = ac.

 When a divides b we say that a is a factor or divisor of b
and that b is a multiple of a.

* The notation a | b denotes that a divides b.
e Ifa | b, then b/a is an integer.
e If a does not divide b, we write a } b.

Example: Determine whether 3 | 7
and whether 3 | 12.
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Properties of Divisibility

Theorem 1: Let a, b, and c be integers, where a #0.
i.i Ifalbandalc,thenal (b+c);
ii. Ifa]|b, thena | bc forall integers c;
iii. Ifalbandb | c, thena|c.

Proof: (i) Supposea | band a | ¢, then it follows that there are
integers s and t with b = as and ¢ = at. Hence,

b+c=as+at=a(s+t). Hence, a|(b+c)
<4

(parts (ii) and (iii)can be proven similarly)

Corollary: If a, b, and c be integers, where a+0, such thata | b
and a | ¢, then a | mb + nc for any integers m and n.

Can you show how it follows easily from from (ii) and (i) of Theorem 1?
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Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder.

Theorem (“Division Algorithm”): If a is an integer and d a positive integer, then
there are unique integers g and r with 0 <t < d, such that a=dq + r (proved in Section 5.2).

« ais called the dividend. Definitions of Functions

« dis called the divisor. div and mod

¢ is called the quotient.

« riscalled the remainder. a
g=adivd < {—J
r=amod d d

Examples:
«  What are the quotient and remainder when 101 is divided by 11?
Solution: The quotientis 9 =101 div 11 and theremainderis 2 =101 mod 11.

«  What are the quotient and remainder when 11 is divided by 37
Solution: The quotientis 3 =11div3 and theremainderis 2 =11 mod 3.

«  What are the quotient and remainder when —11 is divided by 37
Solution: The quotientis —4 =-—11div3 and theremainderis 1=-11 mod 3.



Congruence Relation

Definition: If a and b are integers and m is a positive integer, then a is
congruent to b modulo mif m divides a-b.

The notation a = b (mod m) says that a is congruent to b modulo m.
We say that a = b (mod m) is a congruence and that m is its modulus.

Two integers are congruent mod m if and only if they have
the same remainder when divided by m.  (Theorem 3 later)

If a is not congruent to b modulo m, we write a # b (mod m)

Example: Determine whether 17 is congruent to 5 modulo 6 and
whether 24 and 14 are congruent modulo 6.

Solution:
« 17 =5 (mod 6) because 6 divides 17 — 5 = 12.
o 24 % 14 (mod 6) since 24 — 14 = 10 is not divisible by 6.



More on Congruences

Theorem 4: Let m be a positive integer. The integers
a and b are congruent modulom  if and only if
there is an integer k such that a = b + km.

Proof:

e [fa = b (mod m), then (by the definition of
congruence) m | a - b. Hence, there is an integer k such
that a — b = km and equivalently a = b + km.

e Conversely, if there is an integer k such that a = b + km,
thenkm=a-b. Hence, m|a-banda = b (mod m). <«
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(mod m) and mod m Notations

The use of “mod” in a = b (mod m) is different from
its use in a = b mod m.

e a = b(modm) - mod relates (two) sets of integers.

e a =bmodm - here mod denotes a function.

The relationship/differences between these is clarifies below:

Theorem 3: Let a and b be integers, and let m be a positive
integer. Then a=b (mod m) ifand only if
amod m = b mod m. (proof - home exercise)



Congruences of Sums and Products

Theorem 5: Let m be a positive integer. If a = b (mod m) and
¢ = d (mod m), then

a+c =b+d(modm) and ac = bd (mod m)

Proof:
e Becausea = b (mod m) and ¢ = d (mod m), by Theorem 4 there
are integers s and t with b=a +sm and d=c + tm.
e Therefore,
e b+d=(a +sm)+(c+tm)=(a+c)+m(s+t)and
o bd=(a +sm) (c + tm) = ac + m(at + cs + stm).
e Hence,a+c¢ = b+d (modm)and ac = bd (mod m).

Example: Because 7 = 2 (mod 5)and 11 = 1 (mod 5), it
follows from Theorem 5 that

18=7+11

A

2+1=3 (mod5)
2-1=2 (mod)5)
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Algebraic Manipulation of Congruences

Multiplying both sides of a valid congruence by an integer preserves validity.

If a = b (mod m) holds then c-a = c-b (mod m), where c is any integer, holds
by Theorem 5 with d = c.

Adding an integer to both sides of a valid congruence preserves validity.

If a = b (mod m) holds then ¢ + a =c + b (mod m), where c is any integer,
holds by Theorem 5 with d = c.

NOTE: dividing a congruence by an integer may not produce a valid congruence.

Example: The congruence 14 = 8 (mod 6) holds. Dividing both sides by 2
gives invalid congruence since 14/2 =7 and 8/2 =4, but 7#4 (mod 6).

See Section 4.3 for conditions when division is ok.



“Computing the mod m Funcm

Products and Sums

We use the following corollary to Theorem 5 to compute the
remainder of the product or sum of two integers when divided
by m from the remainders when each is divided by m.

Corollary: Let m be a positive integer and let a and b be
integers. Then

(a+b)modm = ((a modm)+ (b modm)) mod m
and
abmodm = ((@a modm) (b mod m)) mod m.

(proof in text)
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Arithmetic Modulo m

Definitions: Let Z = 01 .. m—1}
be the set of nonnegative integers less than m. Assume a,b € Z .

The operation +,, isdefinedas a +,b = (a + b) mod m.
This is addition modulo m.

The operation - isdefinedas a-_b=(a-b) mod m.

m m
This is multiplication modulo m.

Using these operations is said to be doing arithmetic modulo m.

Example: Find 7 +,;,9 and 7 -, 9.

Solution: Using the definitions above:
*7+,19 = (7+9) mod11l = 16mod11 = 5
©7-,9 = (7°9) mod11 = 63mod1l = 8
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Arithmetic Modulo m

The operations +,, and - = satisfy many of the same properties as
ordinary addition and multiplication.

e Closure: If aand b belongtoZ_,then a+,_banda-_bbelongtoZ_.

e Associativity: If a, b, and c belong to Z_, then
(@+,b)+.c=a+, (b+ c)and(a- b) . c =a- (b c).

e Commutativity: If aand b belong to Z_, then
a+,b=b+_ aanda- b =>b-_a.

o Identity elements: The elements 0 and 1 are identity elements for
addition and multiplication modulo m, respectively.

 Ifa belongsto Z_,thena+,0 =a anda-,1 =a.

continued —
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Arithmetic Modulo m

o Additive inverses: If a# 0 belongs to Z_, then m—a is the additive
inverse of a modulo m and 0 is its own additive inverse.

a+,(m—a) =0 and 0+,0 =0

e Distributivity: If a, b, and c belong to Z_, then

ar. b+ cr={(a~bl+ (a . c) and
(@a+,.b)- . c=(a-c)+, (b c)

Multiplicatative inverses have not been included since they do not always
exist. For example, there is no multiplicative inverse of 2 modulo 6, i.e.

2-a #1 foranyaeZ,

(optional) Using the terminology of abstract algebra, Z  with +_isa
commutative group and Z_, with +_ and - is a commutative ring.
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Representations of Integers

In the modern world, we use decimal, or base 10,
notation to represent integers. For example when we
write 965, we mean 91024 + 6-10! + 5-10°,

We can represent numbers using any base b, where b
is a positive integer greater than 1.

The bases b = 2 (binary), b = 8 (octal) , and b= 16
(hexadecimal) are important for computing and
communications

The ancient Mayans used base 20 and the ancient
Babylonians used base 60.
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Base b Representations

We can use positive integer b greater than 1 as a base, because of
this theorem:

Theorem 1: Let b be a positive integer greater than 1. Then if n
is a positive integer, it can be expressed uniquely in the form:

n = qb*+aq_ b+ .. +ab+aq,

where k is a nonnegative integer, a,,a,,.... a, are nonnegative
integers less than b, and a;# 0. The a;, j = 0,...,k are called the
base-b digits of the representation.

(We will prove this using mathematical induction in Section 5.1.)

The representation of n given in Theorem 1 is called
the base b expansion of n and is denoted by (a,a, ,....a,a,),.

We usually omit the subscript 10 for base 10 expansions.
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Binary Expansions

Most computers represent integers and do arithmetic with
binary (base 2) expansions of integers. In these
expansions, the only digits used are 0 and 1.

Example: What is the decimal expansion of the integer that
has (10101 1111), as its binary expansion?

Solution:
(101011111), =1-28 +0-27 +1:2% +0-2> + 1-2% + 1-23
22 f -2 L -9V — 351

Example: What is the decimal expansion of the integer that
has (11011), as its binary expansion?

Solution: (11011),=1-2% + 1:23 + 0-22 4+ 1-21 + 1-2°0 =27.
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Octal Expansions

The octal expansion (base 8) uses the digits

{0,1,2,3,4,5,6,7}.

Example: What is the decimal expansion of the
number with octal expansion (7016) ?
Solution: 7-8% 4 0-8%2 4+ 1-8! 4 6-8° =3598
Example: What is the decimal expansion of the
number with octal expansion (111)4?
Solution: 18> + 181 +1:8°=64+8+1=73
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Hexadecimal Expansions

The hexadecimal expansion needs 16 digits, but our decimal
system provides only 10. So letters are used for the additional
symbols. The hexadecimal system uses the digits
10,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. The letters A through F
represent the decimal numbers 10 through 15.

Example: What is the decimal expansion of the number with
hexadecimal expansion (2AE0B),, ?

Solution:
2:16% +10-163 + 14:162%2 + 0-161 + 11:16° =175627

Example: What is the decimal expansion of the number with
hexadecimal expansion (1E5) ?

Solution: 1-16% + 14-16! + 5-16° = 256 + 224 + 5 =485
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Base Conversion

To construct the base b expansion of an integer n (in base 10):

e Divide n by b to obtain a quotient and remainder.
n=bqy+a, 0<a,<b

e The remainder, a,, is the rightmost digit in the base b
expansion of n. Next, divide g, by b.
go=bg,+a;, 0<a;<b

e The remainder, a,, is the second digit from the right in the base
b expansion of n.

e Continue by successively dividing the quotients by b, obtaining
the additional base b digits as the remainder. The process
terminates when the quotient is O.

continued —



Algorithm: Constructing Base b Expansions

procedure base b expansion(n, b: positive integers with b > 1)

q:=n

k:=0

while (g = 0)
a,:=qgmod b
7 div b
Kk =k+1

return (a,_;,..., a,a,) {(a, ... a;a,), is base b expansion of n}

q represents the quotient obtained by successive divisions
by b, starting with g = n.

The digits in the base b expansion are the remainders of the
division given by ¢ mod b.

The algorithm terminates when g = 0 is reached.
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Base Conversion

Example: Find the octal expansion of (12345)
Solution: Successively dividing by 8 gives:

e 12345=8-1543 +1

o 1543 =8 192 %7

e 192=8:24+0

e 24=8-3+0

s 3 =8 U+3
The remainders are the digits from right to left
yielding (30071)s,.



mparison of Hexadecima

and Binary Representations

Octal,

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal 0123 4 d 6 I 8 9 10 11 12 13 14 15

Hexadecimal | O | 1 [ 2 | 3| 4 | § | 6 | 7 8 9 A B € D E F

Octal 0123 4 5 6 1 10 1 12 13 14 15 16 17
Binary O 1 {10 11}100 | 101 { 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111

Each octal digit corresponds to a block of 3 binary digits.

Initial Os are not shown

Each hexadecimal digit corresponds to a block of 4 binary digits.

So, conversion between binary, octal, and hexadecimal is easy.
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—Conversion Between Binary, Octal,
and Hexadecimal Expansions

Example: Find the octal and hexadecimal expansions of
(11111010111100),,.

Solution:

e To convert to octal, we group the digits into blocks of three
(011 111 010 111 100),, adding initial Os as needed. The
blocks from left to right correspond to the digits 3,7,2,7,
and 4. Hence, the solution is (37274),.

e To convert to hexadecimal, we group the digits into blocks
of four (0011 1110 1011 1100),, adding initial Os as
needed. The blocks from left to right correspond to the
digits 3,E,B, and C. Hence, the solution is (3EBC) .
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Binary Addition of Integers

Algorithms for performing operations with integers using
their binarz expansions are important as computer chips

inary numbers. Each digit is called a bit.

procedure add(a, b: positive integers)

Cprev =0 (represents Carry from the previous bit addition)

for j:=0ton—1
C ;= [(aj + bj + Cprev)/ZJ - quotient (carry for the next digit of the sum)

S]- = a]-+ bj+ Cprev — 2 C - remainder (/~th digit of the sum)
Cprev =C
R 6

n

{the binary expansions of a and b are (a,_;,a, ,,...,.a,), and (b, ,,b, ,,...,b,),, respectively}

a,+ b,

a,+b; +c¢,

a+ b, + ¢4

CO '2 +SO

return (s, ...,s;, S;) {the binary expansion of the sum is (s,,s, 1,...,Sg)}

The number of additions of bits used by the algorithm to

add two n-bit integers is O(n).




Binary Multiplication of Integers

Algorithm for computing the product of two n bit integers.

¢ b = githokrh Sblp s h Y ab ab, . otaborab
k k-1 1 0 k k-1 1 0
shift by k  shift by k-1 shift

procedure multiply(a, b: positive integers)
{the binary expansions of a and b are (a,_;,qa,,,,...,ay), and (b, _,,b, ...,b,),, respectively}
for j:=0ton—1

if b;= 1 then ¢;= a shifted j places N A
elsec;:=0 x 101 -b
s T
p:=0 110 -ab,
for j:=0ton—1 000 -ab,

return p {p is the value of ab}

The number of additions of bits used by the algorithm to
multiply two n-bit integers is O(n?).
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Section Summary

Prime Numbers and their Properties

Conjectures and Open Problems About Primes

Greatest Common Divisors and Least Common Multiples
The Euclidian Algorithm

gcd(s) as Linear Combinations

Relative primes
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Primes

Definition: A positive integer p greater than 1 is called
prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime
is called composite.

Example: The integer 7 is prime because its only

positive factors are 1 and 7, but 9 is composite because
it is divisible by 3.



“The Fundamental Theorem of

Arithmetic (prime factorization)

Theorem: Every positive integer greater than 1 can be
written uniquely as a prime or as the product of two or
more primes where the prime factors are written in
order of nondecreasing size.

v o) ' e
a_pl p2 pn

Examples:
. gy 255 ) 5
e 641 = 641

999 33337 337
s 1021 22 9 ) ) L)



) astothenes

2 (276-194 B.C.)

The Sieve of Erastosthenes

The Sieve of Erastosthenes can be used to find all primes not
exceeding a specified positive integer.

For example, consider the list of integers between 1 and 100:

a. Deleteall the integers, other than 2, divisible by 2.
b. Delete all the integers, other than 3, divisible by 3.

c. Next, delete all the integers, other than 5, divisible by 5.
d. Next, delete all the integers, other than 7, divisible by 7.

all remaining numbers between 1 and 100 are prime:
{2,3,7,11,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89, 97 }

Why doeS thiS WOI‘](? continued »



The Sieve of Erastosthenes

TABLE 1 The Sieve of Eratosthenes.

Integers divisible by 2 other than 2
receive an underline.

Integers divisible by 3 other than 3

receive an underline.

If an integer n is a composite
integer, then it must have a prime
divisor less than or equal to Vn.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 61 62 63 64 65 66 61 68 69 70
71 72 73 14 75 16 77 18 19 80 71 72 73 74 15 16 77 18 19 80
81 82 83 84 85 86 87 88 89 90 81 8 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 96 97 98 99 100
Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive
receive an underline. an underline; integers in color are prime.
12 3 4 5 6 7 8 9 10 1 2 4 5 6 7 8 92 10
12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20
20022 23 24 25 26 27 28 29 30 21 22 23 24 25 26 21 28 29 30
31 32 33 34 35 36 37 38 39 40 5132 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50
5152 53 54 55 56 57 58 59 60 S1 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 10 61 62 63 64 65 66 67 68 69 10
1 72 73 74 15 16 77 78 719 80 71 72 73 74 75 76 71 18 719 80
81 82 83 84 8 8 8§ 88 8§ 90 81 82 83 84 85 86 87 88 89 %
91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 9 97 98 99 100

To see this, note that if n = ab,
then a<+vn or b<vn.

For n=100 Vn=10, thus any
composite integer <100 must
have prime factors less than 10,
that is 2,3,5,7. The remaining
integers <100 are prime.

Trial division, a very inefficient
method of determining if a
number n is prime, is to try every
integer i <Vn and see if n is
divisible by i.




Infinitude of Primes

Theorem: There are infinitely many primes.

Proof: Assume finitely many primes: p, p,, ....., p,,
* Letg=ppy-pp+1

(325 B.C.E. — 265 B.CE.)

e Either g is prime or by the fundamental theorem of arithmetic it is a

product of primes.

« But none of the primes p; divides g since if p;| g, then p; divides

q —ppP, P, = 1 (contradiction to divisibility by P ).

« Hence, there is a prime not on the list p, p,, ....., p,. It is either g, or if q is
composite, it is a prime factor of g. This contradicts the assumption that

Dy Py - P, areall the primes.

e Consequently, there are infinitely many primes. <«

This proof was given by Euclid The Elements. The proof is considered to be one of the most
beautiful in all mathematics. Itis the first proof in The Book, inspired by the famous
mathematician Paul Erdés’ imagined collection of perfect proofs maintained by God.

Paul Erdés
(1913-1996)
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Generating Primes

The problem of generating large primes is of both theoretical
and practical interest.

Finding larﬁe primes with hundreds of digits is important in
cryptographny.
So far, no useful closed formula that always produces primes

has been found. There is no simple function f{n) such that f{(n)
is prime for all positive integers n.

fln) =n? —n + 41 is prime for all integers 1,2,..., 40. Because of
this, we might conjecture that f{n) is prime for all positive
integers n. But f{(41) = 412 is not prime.

More generally, there is no polynomial with integer coefficients
such that f(n) is prime for all positive integers n.

Fortunately, we can generate large integers which are almost
certainly primes.
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Mersenne Primes

S

Marin Mersenne
(1588-1648)

Definition: Prime numbers of the form 27 — 1, where p is
prime, are called Mersenne primes.

Jea g s dy s T and 2 =] =10 are
Mersenne primes.

211 —1 =2047 isnota Mersenne prime since 2047 = 23-89.
There is an efficient test for determining if 27 —1 is prime.
The largest known prime numbers are Mersenne primes.

On December 26 2017, 50-th Mersenne primes was found, it is
277232917 — 1, which is the largest Marsenne prime known. It has
more than 23 million decimal digits.

The Great Internet Mersenne Prime Search (GIMPS) is a distributed
computing project to search for new Mersenne Primes.


http://www.mersenne.org/
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Conjectures about Primes

Even though primes have been studied extenswel?f for centuries,
many conjectures about them are unresolved, including:

Goldbach’s Conjecture: Every even integer n, n > 2, is the sum of
two primes. It has been verified by computer for all positive
even integers up to 1.6 -10%8. The conjecture is believed to be
true by most mathematicians.

There are infinitely many primes of the form 7* + 1, where n is a
positive integer. But it has been shown that there are infinitely
many primes of the form n* + 1 which are the product of at most
two primes.

The Twin Prime Conjecture: there are infinitely many pairs of
twin primes. Twin primes are pairs of primes that differ by 2.
Examples are 3 and 5,5 and 7, 11 and 13, etc. The current
world’s record for twin primes (as of mid 2011) consists of
numbers 65,516,468,355-2333533 +1, which have 100,355
decimal digits.
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Greatest Common Divisor (gcd)

Definition: Let a and b be integers, not both zero. The largest
integer d such that d | a and also d | b is called the greatest
common divisor of a and b. The greatest common divisor of a
and b is denoted by gcd(a,b).

One can find greatest common divisors of small numbers by
inspection.

Example: What is the greatest common divisor of 24 and 367
Solution: gcd(24,26) = 12

Example:What is the greatest common divisor of 17 and 227
Solution: gcd(17,22) = 1



. — From primes to refative primes s

Greatest Common Divisor (gcd)

Definition: The integers a and b are relatively prime if their
greatest common divisor is ged(a,b) = 1.
Example: 17 and 22

Definition: The integers a,, a,, ..., a, are pairwise relatively prime if
gcd(a;, a;)= 1 whenever 1 < i<j <n.

Example: Determine whether the integers 10, 17 and 21 are pairwise
relatively prime.

Solution: Because gcd(10,17) = 1, gcd(10,21) = 1, and gcd(17,21) =1,
10, 17, and 21 are pairwise relatively prime.

Example: Determine whether the integers 10, 19, and 24 are pairwise
relatively prime.

Solution: No, since gcd(10,24) = 2.



/Fmg the Greatest Common Divisor
Using Prime Factorizations

Suppose that (unique) prime factorizations of a and b are:

s 0 . wvvabyialis b,
a’_pllp2 pf?}, ’ b_p1p2 p'n, 9

where each exponent is a nonnegative integer, and where all primes
occurring in either prime factorization are included in both. Then:

1N (a1,b I (az,b 1N (an,by
gcd(a, b) = pllnm(al 1)p£n1n(a2 2) ...p};nm(a L

This formula is valid since the integer on the right (of the equals sign)
divides both a and b. No larger integer can divide both a and b.

Example: 120=2"-3-5 = 500 - 72 52
ng(lZO,SOO) — 2min(3,2) .3min(1,0) .gmin(1,3) = 22.30.51 = 2()

NOTE: finding the gcd of two positive integers using their prime
factorizations is not efficient because there is no efficient algorithm for
finding the prime factorization of a positive integer.
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Least Common Multiple (lcm)

Definition: The least common multiple of the Eositive integers a and b

is the smallest positive integer that is divisible by both a and b. It is
denoted by lcm(a,b).

The least common multiple can also be computed from the prime
factorizations.

lem(a, b) = p?lax(al,bl)pgﬂa}((ag,bg) % _pnmax(an,bn

This number is divided by both a and b and no smaller number is

divided by a and b.
EX&IIIP]EZ lcm(233572’ 2433) — 2max(3,4) 3max(5,3) 7max(2,0) — 24 35 72

The greatest common divisor (gcd) and the least common multiple (lcm)
of two integers are related by:

Theorem 5: Let a and b be positive integers. Then

a~b = gedlab)-lcm(ab)




EUCIIdean AlgOrIthm (325 B.CE. — 265 B.CE.)

The Euclidian algorithm is an efficient method for

computing the greatest common divisor of two integers.

It is based on the idea that gcd(a,b) = gcd(b,r) when

a > b and r is the remainder when a is divided by b.
(indeed, since a=bqg+r, then r=a-bq. Thus,if dla and d|b then d|r)

Example: Find gcd(287,91):

o 287/: 9&14 Divide 287 by 91
g 91;14 6 +7 Divide 91 by 14
e 14=7-24+0 Divide 14 by 7
\ :
Stopping
condition

gcd(287,91) = ged(91, 14) = ged(14, 7) = gcd(7,0) =7

continued =
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Euclidean Algorithm

The Euclidean algorithm expressed in pseudocode is:

procedure gcd(a, b: positive integers, WLOG assume a>b)
X:=a
y:=b
while y #0
r:=xmody
Xi=y
V=T
return x {gcd(a,b) is x}

Note: the time complexity of the algorithm is
O(log b), where a > b.



Correctness of Euclidean Algorithm

Lemma 1l: Let r=amodb, wherea>b>r are
integers. Then gcd(a,b) = ged(b,r).
Proof:

e Any divisor or a and b must also be a divisor of r since
a=bqg+r (for quotient q=adivb) and r=@-00aq.

 Therefore, gcd(a,b) = ged(b,r). <



~

Correctness of Euclidean Algorithm

Suppose that a and b are positive rg =ryq,+T1, O0<r,<r;<r
integers with a > 4. Farairg s 0< i
Letr,=aand r; = b.
Successive applications of the division
lgorithm yields:
algorit yields gcd
F'n-2 _rnlqn1+® Osrn<rn1?
F'n-1 =Ty
Eventually, a remainder of zero occurs in the sequence of terms: a=ry>r; >r,>--- >0,
The sequence can’t contain more than a terms.
By Lemma 1
gcd(a,b) = ged(ry,ry) =+ = ged(r,.4,1,,) = ged(r,, 0) = r,,.

Hence the gcd is the last nonzero remainder in the sequence of divisions. <4
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gcd(s) as Linear Combinations

Bézout’s Theorem: If a and b are positive integers, then there
exist integers s and t such that gcd(a,b) = sa + tb.

Definition: If a and b are positive integers, then integers s and ¢
such that gcd(a,b) = sa + tb are called Bézout coefficients of a
and b. The equation gcd(a,b) = sa + tb is called Bézout’s
identity.

Expression sa + tb isa linear combination of a and b with
coefficients of s and t.

Example: gcd(6,14)= 2 = (—2)6+ 114



Finding gcd(s) as Linear Combinations

Example: Express gcd(252,198) = 18 as a linear combination of 252 and 198.
Solution: First use the Euclidean algorithm to show gcd(252,198) = 18

. @210 54

. 198 =3:54 + 36

. 54=1 -36

iv. 36 =2-18

e Working backwards, from iii and i above
18=54— 1-36
36 =198 — 3:54

e Substituting the 2" equation into the 15t yields:
18=54— 1-(198 — 3:54)=4-:54— 1-198

e Substituting 54 =252 — 1-198 (from i)) yields:
18=4-(252—- 1-198) — 1:198 =4-252 — 5-198

This method illustrated above is a two pass method. It first uses the Euclidian algorithm to find the gcd
and then works backwards to express the gcd as a linear combination of the original two integers.
A one pass method, called the extended Euclidean algorithm, is developed in the exercises.



Consequences of Bézout’s Theorem

Lemma 2: If a, b, c are positive integers such that a and b are relatively
prime (gcd(a, b) =1) and a | bc then a | c.

Proof: Assume gcd(a, b) =1and a | bc

 Since gcd(a, b) = 1, by Bézout’s Theorem there are integers s and ¢ such that
sa +th=1.

e Multiplying both sides of the equation by c, yields sac + tbc = c.

e From Theorem 1 of Section 4.1:

a | bc implies a | thc (part ii). Since a | sac then a divides sac + thc (part i). <
We conclude a | ¢, since sac + tbc = c.

A generalization of Lemma 2 below is important for proving uniqueness of prime factorization:
Lemma 3: If pis primeand p | q, a, ... a, where a; are integers then p | a; for somei.




Dividing Congruences by an Integer

Dividing both sides of a valid congruence by an integer
does not always produce a valid congruence (see Section 4.1).

But dividing by an integer relatively prime to the modulus
does produce a valid congruence:

Theorem 7: Let m be a positive integer and let a, b, and ¢
be integers. If gcd(c,m) =1 and ac = bc (mod m), then
a= b (mod m).

NOTE: can always divide congruency by any prime number p>vVm since ged(p,m) =1

Proof: Since ac = bc (mod m), m | ac — bc = c(a — b) by
Lemma 2 and the fact that ged(c,m) = 1, it follows that
m | a— b. Hence, a = b (mod m). ~



