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Abstract

Our work was inspired by recent advances in image segmentatiere flux-
based functionals significantly improved alignment of cbfundaries. We
propose a novgbhotofluxfunctional for multi-view 3D reconstruction that
is closely related to properties of photohulls. Qulrotohull prior can be
combined with regularization. Thus, this work unifies twojonaroups of
multiview stereo techniques: “space carving” and “defdofeanodels”. Our
approach combines benefits of both groups and allows to eedime shape
details without oversmoothing while robustly handlingseiPhotoflux pro-
vides data-driven ballooning force that helps to segmentstructures or
holes. Photoflux maximizing shapes can be also seen as riegdldapla-
cian zero-crossings [3]. We discuss several versions atfofloa functional
based on global, local, or non-deterministic visibility dets. Some forms
of photoflux can be easily added into standard regularimagohniques. For
other forms we propose new optimization methods.

1 Introduction

The reconstruction of 3D shape from a set of its viems|tiview reconstructionis one
of the fundamental problems in computer vision. In this pape assume that all views
are registered within the global coordinate system, suahftr any 3D pointX € %2 it

is possible to find its projection onto each of the views.

The majority of (volumetric) multiview shape-from-phototsistency methods fall
into two categories: greedy space carving approachesgiairecovering maximal pho-
toconsistent shapes, photohulls, and energy-based nsesieadching for some regular-
ized surface with good photoconsistency (see the bottonirrdiae table below).

Greedy methods | Minimal/deformable | Flux-based

surfaces methods
Image Thresholding[18] | Snakes|[8] Level-sets[21]
segmentation | Region growing[1] | Level-sets[15] Graph cuts[11]
Graph cuts[4]
Multiview Voxel coloring [19] | Mesh-based [6] This

reconstruction| Space carving[13] | Level-sets[7, 20, 16] work
Graph cuts[22, 14]

(volumetric)

Normally, energy-based methods achieve better surfadéygbg adding regularization
that removes noise. However, their explicit bias towardsimal surfaces may have an
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(a) noisy data (b) 8 views (c) 16 views (d) zoom

Figure 1: Example ophotoconsistency flowector field (Sec.2.3) in a 3D volume. One
camera view of a 3D scene is shown in (a). The spectrum of €@ho(b-d) indicates
divergence of the vector field. Green color correspondsrio digergence. Pictures (b-d)
illustrate vector fields based on “average” photoconsistgmnadients (7).

oversmoothing effect. In contrast, greedy methods likesgarving do not have this
minimality bias which helps them to outperform energy-lohseethods on the scenes
with thin, protruding, and/or textureless parts.

This work is largely inspired by the recent progress in imaggmentation, which
is another low-level vision problem that in many aspectdrslar to volumetric multi-
view reconstruction of shapes (see the upper row in the tidee). The field of image
segmentation was once dominated by greedy methods (esghttiding or region grow-
ing) that were eventually replaced by regularized minideflirmable surface approaches.
However, standard minimum surface methods forimage seti@mtend to oversmooth
thin structures and undersegment/oversegment blurreddaoies which is very similar
to problems of current energy-based multiview reconsimaagnethods.

Recent results in image segmentation suggest that incipgflux-based function-
als into local and global regularization methods such aslise&ts [21, 9] and graph cuts
[11] significantly improves segmentation of thin elongastdictures and alignment of
segments with object boundaries. These approaches adweatgy functionals com-
bining Riemannian area/length with flux of a vector field naligncomputed from the
gradients of a gray-scale image.

This paper proposes to integrate flux optimization into fegzation-based methods
for multiview reconstruction. We show that flux of vector fiselcomputed from the
gradients of photoconsistency functigohptofluy introduces a data-driven ballooning
force biasing reconstructed shapes towards maximal pbosisten surface (photohull).
This bias helps to recover textureless (Figure 1) and thigu@@ 5(d)) parts of objects.
Photoflux can be easily integrated into the majority of ragahtion-based methods for
multiview reconstruction and this paper discusses a nutelsbniques that can use either
local or global optimization methods such as level-setsraplg cuts. We test-prove the
concept of photoflux by experimentally comparing resultdnaind without photoflux.

2 Flux for multiview stereo

One motivation for usinuxin multiview stereo comes from its relationship with a well-
known concept ophotohull§13]. Photohulls are based on binary “yes” or “no” decisions
about photoconsistency of any given point on a current sarfal’he output of greedy
space carving methodshotohull depends on a threshold for making such hard decisions.
Like “region growing” is sensitive to “leaking” through wkeapots on object boundary,
space carving is not robust to noise or specularities orcobjeface that will often result
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Figure 2: Photoconsistency decision functions used to ctenphotohulls (a) and
photoflux (b). Thex-axis shows possible values of inter-camera color varignc®lot
(b) represents a non-deterministic strategy that can beaga smoothed version of the
binary decision function (a). Strategy (b) may better ac¢dor noise and outliers in the
data. Equation (1) is one example of a differentiable phaaistency function as in (b).

in “leaking” and eventual cascading erosion of the shape.

However, space carving has some noticable advantagesxastng minimal surface
methods for multiview stereo. Space carving can reconsthiie objects or fine pro-
truding details that previous energy based methods tenddmsmooth. We propose a
flux-based surface functional that allows to integrate a bdgphotohull into regulariza-
tion methods for multi-view stereo. This combines the besefi two standard groups
of multiview reconstruction methods (see table above)ulaigation provides noise ro-
bustness while flux counteracts shrinking bias. In the nelassctions we formulate our
photofluxfunctional motivating it by an argument showing that a scefaf a photohull
should have large flux of photoconsistency gradients.

2.1 Photoflux and global visibility

For now, assume a fixed surfaBe Let p(X|S) be somecolor variancefunction mea-
suring the deviation between the coldfs..., I of a pointX in different views given
visibility of X defined by the shap®(for example, this could be a current solution in an
iterative algorithm). Some examples of color variance messare mentioned in Sec-
tion 3.2. Under a Gaussian noise assumption, the likelilmd@dsurface at poinX to be
photoconsistent with the images is

A A X|S
P(X|8) = Pr(I},... 17X € §) Dem(—%%?) (1)
whereo is the noise variance. We will use this likelihood functibndughout the paper.
We will simply refer to (1) as @hotoconsistency function
In contrast, space carving algorithm uses a binary phosistamcy function

& [ 1 ifpX|9 <o
P“@_{OWpa©>o

whereg is a photoconsistency threshold (compare plots in Figurd & algorithm can
be regarded as a successive carving of inconsistent vixeleh thaP(X|S) = 0 and a
simultaneous update &f Thus, space carving algorithm converges to st (péotohull)
that is a boundary between points wit(iX|S) = 1 and points witfP(X|S) = 0.

In the context of our non-deterministic photoconsistemyction (1) as in Figure 2(b)
photohull’s boundary can be characterized by a large gnadieP(X|S) directed from
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exterior of photohull to its interior. Based on this obséiaa, we propose the following
functional for energy-based multiview reconstruction

PHOTOFLUXI : F(S):f/S<DP(X|S),Nx>dS )

whereNy is an outward looking unit normal of surfaSeat pointX, and(:,-) is a scalar

product that does not have to be necessarily Euclidean tieaat(2) corresponds to flux
of photoconsistency gradients through the surface. To be,she call this functional a
photofluxthrough an oriented surfa&.

Remember that reconstruction of photohulls using spacgrgaalgorithms does not
include any regularization. Analogously, optimizationffx alone does not provide
any regularization either [11]. Divergence theorem sugtiest flux can be seen as an
“intelligent” regional balloon force. To add regularizati, we augment the functional (2)
with an area surface term. This term can correspond eittend¢tidean aredsdSor to a
photoconsistency-based area, used in other energy-bashdas/spo (X|S)dS

2.2 Photoflux and local visibility

In case of convex shapes we h&(&|S) = P(X|Ngs) whereNgsis an outward normal of
a surface patch containing poitand

P(X|N) = Pr(I%,.., IFIX,N) O exp(%ﬁ'?”) 3)
is a photoconsistency of poiktbased on itéocal visibility [14] defined by a given surface
normalN. Clearly, photoconsistend(X|N) should be computed from cameras located
in the half-space defined by a tangent plane at pgiand its outward normail.
Thus, convexity of shap@impliesOP(X|S) = OP(X|Nx) and photoflux of such shape
can be written as

PHOTOFLUXII : F(S) = —/S(DP(X|NX),NX)dS. 4)

For general non-convex shap8®quation (4) is an approximation of the definition of
photoflux in (2). In case of occlusions due to non-convexftgltape (e.g. in case of
multiple objects) we havB(X|S) > P(X|Nx) since some cameras used to compute pho-
toconsistency based on local visibility contribute an ert©ur experiments show even
local visibility approximations like (4) can still handleenes with significant amount of
such occlusions.

2.3 Photoflux and non-deterministic visibility

Note that the earlier two definitions photofluxare based on vector fields of gradients
OP(X|S) or OP(X|N). These vectors are defined only at podten some given surface
Sor on a given local patch with norm&l. The surface or a patch must be fixed in
order to estimate visibility of poinX before photoconsistend(X|S) or P(X|N) can be
computed. We also assume that small perturbations of offj@gte neaX do not change
visibility so that the gradients of photoconsistency camveuated ax.

1The orientation oSis defined by a field of its “outward” normals.
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(a) 3D cube (slice) (b) 4 cameras (c) 16 cameras

Figure 3: Reconstruction of a cube. Divergence of estimpherioconsistency gradients
is shown in (b) and (c). The images of divergence demonstagigarent contours” of
shape features (sharp corners) or surface texture features

This section provides a more general definition of photoflurstead of computing
visibility of point X deterministically for a given surface or a patch, we assuomes
probability distribution P{W|X) for possible values of visibilityV at any given poinX.
Note that visibilityWW = (wx, ..., wn) is a vector of non-negative weightg > 0 describing
correlation between intensii;‘{ of a pixel in camer& where pointX € %2 projects and
a color of pointX assuming it belongs to some surface.

The most general definition of photoflux in this paper is rmeattxd by flux-based shape
priors for image segmentation [11]. Our “photohull shapemiis based on

PHOTOFLUX I : F(S = —/S<vx,Nx>dS. (5)

where a field of vector$vx } describephotoconsistency flowhat is, direction and rate
of increase in photoconsistency at every poa{ntOne way to obtain such vectors is to
compute expected gradients of photoconsistency by aveyamiknown visibility out

Vg = % OP(X|W) - PrW|X). (6)

Functionals (2) and (4) are special cases of (5) when vityilaf X is deterministic.
We also suggest a simpler but more practical version of pootsistency flow

Vx = ZDP(X|N)-Pr(N|X) (7

where visibility is represented by a possible outward ndrdigction N. A possible
heuristic for estimating probability B¥|X) in practice could be based on gradients of
photoconsistency

Pr(N|X) O (OP(X|N),N)" (8)

where(,)" is a positive part of the dot product. Figures 1(b-d) and 3afestrate vector
fields computed according to equations (7) and (8).

Equation (8) requires a normalization multiplier to maka itrue probability distri-
bution. In practice, however, this may cause “division byoZgroblems which can be
avoided by truncating a vector field where the multipliesgeb small. This “division by
zero” corresponds to points where surface is unlikely te pasl “visibility” is ill-defined.
Practically speaking, equation (8) without any normal@agenerates very similar pho-
toconsistency flow$vx }. This heuristic is also easier to implement since no “dasnidby
zero” numerical problems arise.



In British Machine Vision Conference (BMVC), Sept. 2006s(asee [3]) vol. I, p1154

In general, there are other options for computing vectgrfor photohull prior (5).
For example, we also experimented with vector fields

vx = %N - Pr(N|X). 9)

shown in examples of Figure 1)(e-h). Vector fields could &lembtained from approx-

imate and/or or sparse disparity maps. Such maps can be tednatueach camera by
evaluating correspondences with nearby cameras usingmdnase stereo methods or
robust feature matching.

3 Properties of photoflux optimization

The definitions of photoflux in (2) and (4) use deterministaihility and the correspond-
ing vector fields are defined only on a surface of any fixed shijmre general form of
photoflux (5) allows non-deterministic visibility and thercesponding vector field can
be estimated at any poit € #°. Despite these obvious distinctions, there are many
important common properties of different forms of photofluxich we describe in this
section. For simplicity, we discuss these properties irctrgext of equations (5) and (7).

3.1 Combining photoflux and regularization

Standardspace carvingnethods for photohull reconstruction are analogous to tagap
region-growing techniques in image segmentation and tleegial include any surface
regularization. Section 2.1 “derived” photoflux functibfram properties of photohulls.
Thus, it should not be surprising that photoflux maximizaiigelf does not imply any
regularization. As discussed in [11], flux optimization guezalent to thresholding a
divergenceliv(v) of the corresponding vector field

In the context of Figure 3, “thresholding” implies that atixels of blue color (neg-
ative divergence values) should be selected as surfacgomt# is clear, however, that
this approach would generate noisy and/or ambiguous geslitterefore, we propose to
augment the photofux functional (2) or (5) with regulari@atterm. For example, we can
combine photoflux with an integral of photoconsistency dkierwhole surface obtaining
a regularized photoflux functional

E(S) = —./S‘<DP(X|NX),Nx>dS+/\ -./;p(X|Nx)dS (10)

Alternatively, it might also be possible to regularize pifbtx via Euclidean area of
the surfaces. It is also possible to use non-Euclidean dot products indéfanition of
photoflux that may be based on photoconsistency.

Optimization of an energy combining photoflux and regukian as in (10) should
reconstruct fine object details while handling noise. Plataan be seen as an intelligent
balloon force making minimal surfaces better align witmtprotrusions or concavities.
Combining flux and regularization has similar effects in ga@egmentation [21, 9, 11].

Integrating flux of image gradients into image segmentatioargy results in better
alignment with object boundaries (edges). In particuBjrdemonstrated that regularized
flux optimization can be regarded as a regularized Laplangmo-crossing of image in-
tensity. Analogously, optimization of photoflux can be nelgal as a regularized laplacian
zero-crossing of a “photohull likelyhood” function (for @ds, see [3]).
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3.2 Integrating apparent contoursand texture features

This subsection demonstrates that photoflux based meltw-véconstruction implicitly
relies onapparent contour@and on detecting object textural features. To be specific,
assume that color variance is measured by function

P(XlNX)ZZWk'(|§—|_><)2a &ZZWk-b'? (11)

or by ) )
PXINx) = 5w -w; - (I — I5)? (12)
1)

Wherel>‘§ is intensity of a pixel in camerawhere poiniX € %3 projects Jx is a weighted
average of such intensities, ang is a non-negative weight describing visibility of point
X in camerak. Typically, visibility wy is large for a camera observing surface point
with normalNx under a small angle ang approaches zero for angles near 90 degrees.
Note that color consistency penalty as in (11) was propase8D reconstruction in [20]
and functionals like (12) were proposed in [16] (image-basgularization).

For both (11) and (12), differentiation of photoconsisteR¢X|Nx) in (1) gives

OP(X|Nx) O P(X|Nx)- Zwk-(&—liz)ﬂl)'z (13)

WhereDI>‘§ is a gradient of an image in cametat a pixel where 3D poinX projects.
We treat0l¥ as a 3D vector since k-th camera image plane orientatig#ins known.
Expressions analogous to (13) can be derived for other galieince models.

Equation (13) breaks down the gradient of photoconsistimnoy linear combination
of vectors contributed by individual cameras where pinig visible, that isw > 0. It
is not surprising that each camera contribution is basedsoimiage gradien[l‘ZII)‘é. For
example, a small number of cameras in Figure 3(b) allowsésgaight “rays” of points
with large gradients of photoconsistency. Each “ray” indeg3(b) is formed by points
X € %° projecting onto the same pixel in one of the cameras whergéngaadient is
large. Note that multiplication by a fact®(X|Nx) in (13) discards gradients in all points
X € %° that are not photoconsistent.

Computing a gradient of photoconsistency automaticaltgiols a “good” linear com-
bination of image gradients (13) appropriate for estingasinrface normals. Interestingly,
each camerkindividually does not know how to interpret its image gradge In general,
there are two possible reasons for a large image gradiemyagieen pixel; the camera
could observe either a boundary between an object and a tmacidj(apparent contour)
or a textural detail on a surface. Figure 3(b) demonstrdiasrays of gradients from
different cameras intersect at points that align with arectbgurface either at itshape
featuresor at itstexture featuresNote that by computing gradients of photoconsistency
we automatically detect both types of features and use tisesurdace “anchors”. Larger
number of cameras, e.g. in Figure 3(c), gives tighter aligninof large photoconsistency
gradients with such anchors producing a close outline ofrtieeobject surface.

4 Efficient algorithms

The photoflux optimization can be plugged into virtually amergy optimization frame-
work. In particular, level-sets [7, 16] and banded grapts ¢@2] reconstructions can
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Figure 4: Results of our method for theothpastesequence. Note the sharp top of the
tube. The surface also exhibits significant non-lambertidiectivity effects. Top-right
is the profile slice of a vector field. A strong photoflux vedietd appears in the most
difficult part (top) of the tube. Bottom row - two views of theconstruction.

include the photoflux optimization either in the determtigisorm (2) or in the proba-
bilistic form (5). In the former case, the current soluticgfidles the shape estimafe
determining global visibility.

Local visibility photoflux in (4) allows to use global optizdtion methods using ex-
plicit graph cuts on a complex [10, 14]. However, the coroegiing energy is not guar-
anteed to be submodular. Thus, it may be necessary to teisgpermodular terms as
in [17] (see our results in [3]), or to use QPBO approach to-siwomodular function [2]
that was first proposed for applications in computer visiptKblmogorov et al. [12].

Non-deterministic approach to photoflux (5) can be implet@eéiy global optimiza-
tion methods based on either implicit surface represemtétil] or complex-based graph
cuts [10]. Itis also interesting to investigate global noeth that update estimate of visi-
bility once parts of a surface are recovered in optimizati@ihods that generate partial
solutions.

Another possibility of visibility handling is the iteratvestimation of visibility for
photoflux which can be achieved via local improvement meshi@dg. level-sets [16],
banded cuts [22]), or via discrete algorithms demonstgaititermediate solutions. It
would be also interesting to compare the results of exgieiph cuts on complexes [14]
with implementing regularized photoflux via implicit grapbts techniques [4, 11].

5 Experimental Results

In order to validate the basic concept of photoflux, this papesents our results for
complexbased multiview reconstruction [14] after integratingflux into it (more re-
sults and implementational details can be found in [3]). He &bsence of any scene
approximation, [14] treats visibility and photoconsistgR(X|N) of a patch only as func-
tions of its position and orientation. This technique akaw obtain the global minimum
of a discretized version of regularized photoflux functisres in (10). In particular, we
tested two forms of photoflux (4) and (5).

To construct a complex, we subdivide the approximate bawgndox with 9 families
of parallel planes. As a result, we geC&V-complexcomprising polyhedral cells and the
facets separating cells from each other. For each facetjstiaglish between two faces
of this facet having opposite orientations. For every dgdrfacetr a regularized cost
(10) is computed based on the facet’ area, position, andaanmentation. The minimum
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(a) Original scene (b) Space carving (c) Min. surface [14] ) Rdotoflux

Figure 5: Comparison of different methods for multiviewaastruction on the fox and
camel sequence (similar photoconsistency measure is asad three algorithms). Typ-
ically, space carving generates noisy results while mimnsurface methods oversmooth
the shape. Adding maximization of photoflux into energydaasethods for 3D recon-
struction allows to accurately restore thin protrusiond ather fine details of the shape
(ears of camel and a long tail of the fox).

3] A

Figure 6: Results of our method on standgetgoyleandhandsequences (courtesy of
Prof. Kutulakos). Note the complex topology of the gargoythel the weak texture of

the hand. Please, refer to other publications (e.g. [13), u€ihg these sequences for
comparison.

of aregularized cost (10) over all shapes comprised froméhs of the CW-complex can
is efficiently found using a variant of a min-cut algorithn} #pplied to the graph, which
is dual to the complex.

Non-deterministic photoflux: Integrating functional (5) into complex-based regu-
larization algorithm above is straightforward. One carneste vectovk at each facet
and then introduce directed costs for an n-link correspumtb this facet as described
in [11]. This work guarantees that the corresponding energubmodular and that the
global minima can be computed via max-flow/min-cut alganih e.g. [5]. The results
are presented on the figures 4, 5, 6.

Local-visibility deterministic photoflux: Photoflux in (4) can also be integrated into
complex based regularization framework since each facé¢th®mcomplex has norm&
andOP(X|N) can be evaluated when the complex is constructed. Pledsetad3] for
the details and experimental results in this case.

In our experiments, we use complexes with 5-10 million ofsg&lith a typical run-
ning time of few minutes on a P4-2.8 architecture.

We are working on iterative estimation of visibility for pfodlux which can be achieved
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via local improvement methods (e.g. level-sets [16], banclgs [22]), or via discrete
algorithms demonstrating intermediate solutions. It $oahteresting to compare our re-
sults with explicit graph cuts on complexes [14] with impkeming regularized photoflux
via implicit graph cuts techniques [4, 11]. In general, thare also other methods for
computing vector fields that can estimate photoconsistéovyor surface normals defin-
ing some flux-based shape bias that can help to overcomekamgi’ problem of standard
regularization approach to multiview reconsruction.
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