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Photoflux Maximizing Shapes

Yuri Boykov, Victor Lempitsky

Abstract

Our work was inspired by recent advances in image segmentation where flux-
based functionals significantly improved alignment of object boundaries. We
propose a novelphotofluxfunctional for multi-view 3D reconstruction that
is closely related to properties of photohulls. Ourphotohull prior can be
combined with regularization. Thus, this work unifies two major groups of
multiview stereo techniques: “space carving” and “deformable models”. Our
approach combines benefits of both groups and allows to recover fine shape
details without oversmoothing while robustly handling noise. Photoflux pro-
vides an intelligent ballooning force helping to segment thin structures or
holes. We propose a number of different versions of photofluxbased on
global, local, or non-deterministic visibility models. Some forms of photoflux
can be easily added into standard regularization techniques. For other forms
we propose new optimization methods. We also show that photoflux maxi-
mizing shapes can be seen as regularized Laplacian zero-crossings.

1 Introduction

The reconstruction of 3D shape from a set of its views,multiview reconstruction, is one
of the fundamental problems in computer vision. In this paper, we assume that all views
are registered within the global coordinate system, such that for any 3D pointX ∈ R3 it
is possible to find its projection onto each of the views.

The majority of multiview shape-from-photoconsistency methods fall into two cate-
gories: greedy space carving approaches aiming at recovering maximal photoconsistent
shapes, photohulls, and energy-based methods searching for some regularized surface
with good photoconsistency (Figure 4b&c). Normally, energy-based methods achieve
better surface quality by adding regularization into the reconstruction process removing
noise. However, an explicit bias towards maximal photoconsistent surface, i.e. photohull,
allows space carving to recover more complex geometries andto outperform energy-based
methods on the scenes with thin, protruding, and/or textureless parts.

This work is in many respects inspired by the recent progressin image segmentation,
which is another shape reconstruction problem in low-levelvision sharing a lot in com-
mon with multiview reconstruction. Similarly to multiviewreconstruction, a number of
greedy methods such as thresholding or region growing that once dominated in the field
of image segmentation, were replaced with regularized minimal/deformable surface ap-
proaches. However, standard minimum surface methods for image segmentation often
oversmooth thin structures and undersegment blurred boundaries, which are similar to
problems of current energy-based multiview reconstruction methods.

Recently, new energy-based approaches based on flux integration have been proposed
for image segmentation [31] and significant improvement in segmentation of thin objects
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(a) noisy data (b) 8 views (c) 16 views (d) zoom

(e) noisy data (f) 8 views (g) 16 views (h) zoom

Figure 1: Two methods for computingphotoconsistency flowvector fields (Sec.2.3) in 3D
volumes. One camera view of a 3D scene is shown in (a) and (e). The spectrum of colors
in (b-d,f-h) indicates divergence of vector fields in one slice of the volume. Green color
corresponds to zero divergence. Pictures (b-d) illustratevector fields based on average
photoconsistency gradients (7) and pictures (f-h) show “expected” surface normals (9).

and in alignment of object boundaries has been reported. These approaches optimize the
combination of a Riemannian area/length and the flux of a vector field normally com-
puted from the gradients of a gray-scale image. The state of the art in two problems is
summarized in the table shown below.

Greedy methods Minimal/deformable
surfaces

Flux-based
methods

Image
segmentation

Thresholding [27]
Region growing [1]

Snakes [12]
Level-sets [23]
Graph cuts [3]

Level-sets [31]
Graph cuts [17]

Multiview
reconstruction

Voxel coloring [28]
Space carving [18]

Mesh-based [7]
Level-sets [8, 30, 25]
Graph cuts [29, 32, 20]

This
work

This paper proposes flux optimization for multiview reconstruction. We also propose
methods for calculating vector fields from the gradients of the photoconsistency func-
tion that allow to bias reconstructed surfaces towards photohull (Figure 1). We demon-
strate that integrating flux of such fields,photoflux, into the reconstruction process al-
lows to recover thin and textureless parts of objects. Photoflux can be easily integrated
into regularization-based methods for multiview reconstruction. We propose a number
of novel multiview reconstruction techniques combining photoflux and surface regular-
ization. Such techniques can use both global and local optimization methods such as
level-sets or graph cuts. We prove the concept of photoflux experimentally by comparing
reconstruction results with and without photoflux.

2 From photohulls to photoflux optimization

The concept ofphotohull[18] is based on an “oracle” that makes “yes” or “no” decisions
about photoconsistency of any given point on the current surface. The output of space
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carving algorithm,photohull, will depend on a threshold for making hard decisions about
photoconsistency. Like “region growing” is sensitive to “leaking” through weak spots on
object boundary, space carving is not robust to noise or specularities on object surface
that will often result in “leaking” and eventual cascading erosion of the shape.

However, space carving has one significant advantage over existing minimal surface
methods for multiview stereo. Space carving can reconstruct thin objects or fine protrud-
ing details of the shape that previous energy based methods tend to oversmooth. Below
we propose a surface functional for multiview reconstruction that avoids shrinking bias
of standard regularization-based techniques. Our formulation of multiview reconstruction
problem is motivated by the fact that a surface of a photohullshould have large flux of
photoconsistency gradients, that we also callphotoflux.

Photoflux allows to integrate a bias to photohull into regularization methods for multi-
view stereo. Recent results in image segmentation suggest that incorporating flux-based
functionals into local and global regularization methods such as level-sets [31, 13] and
graph cuts [17] significantly improved alignment of segments with object boundaries.

2.1 Photoflux and global visibility

For now, assume a fixed surfaceŜ. Let ρ(X|Ŝ) be somecolor variancefunction mea-
suring the deviation between the colorsI1

X, ..., Im
X of a pointX in different views given

visibility of X defined by the shapêS (for example, this could be a current solution in an
iterative algorithm). Some examples of color variance measures are mentioned in Sec-
tion 3.3. Under a Gaussian noise assumption, the likelihoodof a surface at pointX to be
photoconsistent with the images is

P(X|Ŝ) = Pr(I1
X, ..., Im

X |X ∈ Ŝ) ∝ exp

(

−
ρ(X|Ŝ)

2σ2

)

(1)

whereσ is the noise variance. We will use this likelihood function throughout the paper.
We will simply refer to (1) as aphotoconsistency function.

Instead of (1) space carving algorithm considers a binary photoconsistency function

P(X|Ŝ) =

{

1 if ρ(X|Ŝ) ≤ σ
0 if ρ(X|Ŝ) > σ

whereσ is a photoconsistency threshold. The algorithm can be regarded as a successive
carving of inconsistent voxelsX such thatP(X|Ŝ) = 0 and a simultaneous update ofŜ.
Therefore, space carving algorithm converges to shapeS (photohull) that is a boundary
between points withP(X|S) = 1 and points withP(X|S) = 0.

In the context of our non-deterministic photoconsistency function (1), a boundary
of a photohull is characterized by a large gradient ofP(X|S) directed from exterior of
photohull to its interior. Based on this observation, we propose the following functional
for energy-based multiview reconstruction

PHOTOFLUX I : F(S) = −

∫

S
〈∇P(X|S),NX〉dS (2)

whereNX is an outward looking unit normal of surfaceSat pointX, and〈·, ·〉 is a scalar
product that does not have to be necessarily Euclidean. Functional (2) corresponds to flux
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of photoconsistency gradients through the surface. To be short, we call this functional a
photofluxthrough an oriented surfaceS1.

Remember that reconstruction of photohulls using space carving algorithms does not
include any regularization. Analogously, optimization offlux alone does not provide
any regularization either [17]. Divergence theorem suggest that flux can be seen as an
“intelligent” regional balloon force. To add regularization, we augment the functional (2)
with an area surface term. This term can correspond either toEuclidean area

∫

SdSor to a
photoconsistency-based area, used in other energy-based methods

∫

Sρ(X|S)dS.

2.2 Photoflux and local visibility

In case of convex shapes we haveP(X|S) = P(X|NdS) whereNdS is an outward normal of
a surface patch containing pointX and

P(X|N) = Pr(I1
X, ..., Im

X |X,N) ∝ exp

(

−
ρ(X|N)

2σ2

)

(3)

is a photoconsistency of pointX based on itslocal visibility [20] defined by a given surface
normalN. Clearly, photoconsistencyP(X|N) should be computed from cameras located
in the half-space defined by a tangent plane at pointX and its outward normalN.

Thus, convexity of shapeSimplies∇P(X|S)= ∇P(X|NX) and photoflux of such shape
can be written as

PHOTOFLUX II : F(S) = −
∫

S
〈∇P(X|NX),NX〉dS. (4)

For general non-convex shapesS equation (4) is an approximation of the definition of
photoflux in (2). In case of occlusions due to non-convexity of shape (e.g. in case of
multiple objects) we haveP(X|S) ≥ P(X|NX) since some cameras used to compute pho-
toconsistency based on local visibility contribute an error. Our experiments show even
local visibility approximations like (4) handle occlusions gracefully.

2.3 Photoflux and non-deterministic visibility

Note that the earlier two definitions ofphotofluxare based on vector fields of gradients
∇P(X|S) or ∇P(X|N). These vectors are defined only at pointsX on some given surface
S or on a given local patch with normalN. The surface or a patch must be fixed in
order to estimate visibility of pointX before photoconsistencyP(X|S) or P(X|N) can be
computed. We also assume that small perturbations of objectshape nearX do not change
visibility so that the gradients of photoconsistency can beevaluated atX.

This section provides a more general definition of photoflux.Instead of computing
visibility of point X deterministically for a given surface or a patch, we assume some
probability distribution Pr(W|X) for possible values of visibilityW at any given pointX.
Note that visibilityW = (w1, ...,wm) is a vector of non-negative weightswk ≥ 0 describing
correlation between intensityIk

X of a pixel in camerak where pointX ∈ R3 projects and
a color of pointX assuming it belongs to some surface.

1The orientation ofS is defined by a field of its “outward” normals.
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(a) 3D cube (slice) (b) 4 cameras (c) 16 cameras

Figure 2: Reconstruction of a cube. Divergence of estimatedphotoconsistency gradients
is shown in (b) and (c). The images of divergence demonstrate“apparent contours” of
shape features (sharp corners) or surface texture features. Our meted can be seen as
regularization of Laplacian zero crossings of average photoconsistency (see Sec. 3.2).

The most general definition of photoflux in this paper is motivated by flux-based shape
priors for image segmentation [17]. Our “photohull shape prior” is based on

PHOTOFLUX III : F(S) = −

∫

S
〈vX ,NX〉dS. (5)

where a field of vectors{vX} describesphotoconsistency flow, that is, direction and rate
of increase in photoconsistency at every pointX. One way to obtain such vectors is to
compute expected gradients of photoconsistency by averaging unknown visibility out

vX = ∑
W

∇P(X|W) ·Pr(W|X). (6)

Functionals (2) and (4) are special cases of (5) when visibility of X is deterministic.
We also suggest a simpler but more practical version of photoconsistency flow

vX = ∑
N

∇P(X|N) ·Pr(N|X) (7)

where visibility is represented by a possible outward normal direction N. A possible
heuristic for estimating probability Pr(N|X) in practice could be based on gradients of
photoconsistency

Pr(N|X) ∝ 〈∇P(X|N),N〉+ (8)

where〈,〉+ is a positive part of the dot product. Figures 1(b-d) and 2 demonstrate vector
fields computed according to equations (7) and (8).

Equation (8) requires a normalization multiplier to make ita true probability distri-
bution. In practice, however, this may cause “division by zero” problems which can be
avoided by truncating a vector field where the multiplier gets too small. This “division by
zero” corresponds to points where surface is unlikely to pass and “visibility” is ill-defined.
Practically speaking, equation (8) without any normalization generates very similar pho-
toconsistency flows{vX}. This heuristic is also easier to implement since no “devision
by zero” numerical problems arise.
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In general, there are other options for computing vectorsvX for photohull prior (5).
For example, we also experimented with vector fields

vX = ∑
N

N ·Pr(N|X). (9)

shown in examples of Figure 1)(e-h). Vector fields could alsobe obtained from approx-
imate and/or or sparse disparity maps. Such maps can be computed at each camera by
evaluating correspondences with nearby cameras using narrow-base stereo methods or
robust feature matching.

3 Properties of photoflux optimization

The definitions of photoflux in (2) and (4) use deterministic visibility and the correspond-
ing vector fields are defined only on a surface of any fixed shape. More general form of
photoflux (5) allows non-deterministic visibility and the corresponding vector field can
be estimated at any pointX ∈ R3. Despite these obvious distinctions, there are many
important common properties of different forms of photofluxwhich we describe in this
section. For simplicity, we discuss these properties in thecontext of equations (5) and (7).

3.1 Combiningphotoflux and regularization

Standardspace carvingmethods for photohull reconstruction are analogous to adaptive
region-growing techniques in image segmentation and they do not include any surface
regularization. Section 2.1 “derived” photoflux functional from properties of photohulls.
Thus, it should not be surprising that photoflux maximization itself does not imply any
regularization. As discussed in [17], flux optimization is equivalent to thresholding a
divergenceof the corresponding vector field

div(v) = ∇ ·v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
.

In the context of Figure 2, “thresholding” implies that all voxels of blue color (negative
divergence values) should be selected as surface interior.It is clear that this approach
would generate noisy and/or ambiguous results. Note that the only difference of space
carving approach would be to carve away exterior voxels starting from a box containing
the object. This exterior “region growing” should stop on boundary between the red and
blue voxels (see Figure 2). Similar to “region growing” methods in image segmentation,
space carving can leak through a single weak spots on an object boundary.

Unlike space carving, our approach to multiview reconstruction describes object bound-
ary via a cost functional, photoflux. In contrast to photohulls, photoflux maximizing
shapes can be regularized by combining photoflux (2) or (5) with any surface regulariza-
tion functionals typically used in multiview reconstruction. For example, we can combine
photoflux with an integral of photoconsistency over the whole surface obtaining a regu-
larized photoflux functional

E(S) = −

∫

S
〈∇P(X|NX),NX〉dS+ λ ·

∫

S
ρ(X|NX)dS. (10)
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Alternatively, it might also be possible to regularize photoflux via Euclidean area of
the surfaceS. It is also possible to use non-Euclidean dot products in thedefinition of
photoflux that may be based on photoconsistency.

Optimization of an energy combining photoflux and regularization as in (10) should
reconstruct fine object details while handling noise. Photoflux can be seen as an intelli-
gent balloon force making minimal surfaces better align with thin protrusions or cavities.
Combining flux and regularization has similar effects in image segmentation [31, 13, 17].

3.2 Photoflux and regularized Laplacian zero-crossings

Integrating flux of image gradients into image segmentationenergy results in better align-
ment with object boundaries. For example, [13] motivates flux-based approach to edge
detection by connecting it with Laplacian zero-crossing filters which are image process-
ing classics. Analogously, optimization of photoflux can give better alignment of 3D
reconstruction results with an object surface (or its photohull).

This section shows that we compute regularized Laplacian zero-crossings of the like-
lihood functionP̄(X) := Pr(I1

X , ..., Im
X |X) for observed intensities given thatX is a point on

a surface of an object. We have

P̄(X) = Pr(I1
X, ..., Im

X |X) = ∑
N

Pr(I1
X, ..., Im

X |X,N) ·Pr(N|X) = ∑
N

P(X|N) ·Pr(N|X) (11)

whereP(X|N) is the photoconsistency function in (3) and Pr(N|X) is a conditional proba-
bility function for a normal of a surface at pointX given that the surface is passing through
X. Generally speaking, averaging overN represents averaging over different possible vis-
ibilities of point X in the cameras observing some object from different views. Thus,
Pr(N|X) can be interpreted as a probability of a given visibility forpointX if it is known
that it belongs to some surface.

Typically, global visibility of pointX on surfaceSdoes not change much if the surface
is slightly nudged atX. Similarly, local visibility of a surface patchdSshould not change
if it moves a bit while preserving its orientation. Therefore, it is natural to assume that
∇Pr(N|X) ≈ 0 (differentiation overX). Then, the gradient of our likelihood function

∇P̄(X) = ∇Pr(I1
X, ..., Im

X |X) = ∑
N

∇P(X|N) ·Pr(N|X) = vX

coincides with vector fieldvX in (7). Ostrogradsky-Gauss theorem, also known asdiver-
gence theorem, implies that maximization of photoflux (5) is equivalent tothresholding
regions with positive divergencediv(vX) from regions with negative divergence. Since

div(vX) = ∇ ·vX = ∇ ·∇P̄(X) = ∆P̄(X)

then combining photoflux optimization for vector fieldvX in (7) with surface regulariza-
tion as in Section 3.1 can be seen as computing regularized Laplacian zero-crossings of
likelihood P̄(X).

3.3 Integrating apparent contoursand texture features

This subsection demonstrates that photoflux based multi-view reconstruction implicitly
relies onapparent contoursand on detecting object textural features. To be specific,
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assume that color variance is measured by function

ρ(X|NX) = ∑
k

wk · (I
k
X − ĪX)2

, ĪX = ∑
k

wk · I
k
X (12)

or by
ρ(X|NX) = ∑

i, j
wi ·wj · (I

i
X − I j

X)2 (13)

whereIk
X is intensity of a pixel in camerak where pointX ∈ R3 projects,ĪX is a weighted

average of such intensities, andwk is a non-negative weight describing visibility of point
X in camerak. Typically, visibility wk is large for a camera observing surface pointX
with normalNX under a small angle andwk approaches zero for angles near 90 degrees.
Note that color consistency penalty as in (12) was proposed for 3D reconstruction in [30]
and functionals like (13) were proposed in [25] (image-based regularization).

For both (12) and (13), differentiation of photoconsistency P(X|NX) in (1) gives

∇P(X|NX) ∝ P(X|NX) · ∑
k

wk · (ĪX − Ik
X) ·∇Ik

X (14)

where∇Ik
X is a gradient of an image in camerak at a pixel where 3D pointX projects.

We treat∇Ik
X as a 3D vector since k-th camera image plane orientation inR3 is known.

Expressions analogous to (14) can be derived for other colorvariance models.
Equation (14) breaks down the gradient of photoconsistencyinto a linear combination

of vectors contributed by individual cameras where pointX is visible, that iswk > 0. It
is not surprising that each camera contribution is based on its image gradient∇Ik

X. For
example, a small number of cameras in Figure 2(b) allows to see straight “rays” of points
with large gradients of photoconsistency. Each “ray” in Figure 2(b) is formed by points
X ∈ R3 projecting onto the same pixel in one of the cameras where image gradient is
large. Note that multiplication by a factorP(X|NX) in (14) discards gradients in all points
X ∈ R3 that are not photoconsistent.

Computing a gradient of photoconsistency automatically obtains a “good” linear com-
bination of image gradients (14) appropriate for estimating surface normals. Interestingly,
each camerak individually does not know how to interpret its image gradients. In general,
there are two possible reasons for a large image gradient at any given pixel; the camera
could observe either a boundary between an object and a background (apparent contour)
or a textural detail on a surface. Figure 2(b) demonstrates that rays of gradients from
different cameras intersect at points that align with an object surface either at itsshape
featuresor at itstexture features. Note that by computing gradients of photoconsistency
we automatically detect both types of features and use them as surface “anchors”. Larger
number of cameras, e.g. in Figure 2(c), gives tighter alignment of large photoconsistency
gradients with such anchors producing a close outline of thetrue object surface.

4 Efficient algorithms

The photoflux optimization can be plugged into virtually anyenergy optimization frame-
work. In particular, level-sets [8, 25] and banded graph cuts [32] reconstructions can
include the photoflux optimization either in the deterministic form (2) or in the proba-
bilistic form (5). In the former case, the current solution defines the shape estimateŜ
determining global visibility.
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Local visibility photoflux in (4) allows to use global optimization methods using ex-
plicit graph cuts on a complex [14, 20]. However, the corresponding energy is not guar-
anteed to be submodular. Thus, it may be necessary either to truncate supermodular terms
as in [26], or to use approximation methods like QPBO [2].

Non-deterministic approach to photoflux (5) can be implemented by global optimiza-
tion methods based on either implicit surface representation [17] or complex-based graph
cuts [14]. It is also interesting to investigate global methods that update estimate of visi-
bility once parts of a surface are recovered in optimizationmethods that generate partial
solutions (e.g., push-relabel [6], pseudo-flows [10], or active cuts [11]).

5 Experimental Results

To validate the general concept of photoflux in this paper, wepresent our results for
complex-based multiview reconstruction [20] after integrating photoflux into it. This
technique allows to obtain the global minimum of a discretized version of regularized
photoflux functionals as in (10). In particular, we tested two forms of photoflux (4) and
(5). We only briefly describe complex construction and an optimization algorithm pre-
sented in [20] focussing on the properties of our new regularized photoflux functional.

5.1 Estimating Photoconsistency Gradients

Our experimental results were obtained using vector fields of photoconsistency flow as
in (4) and (5,7,8). The main component of these formulas is photoconsistency gradient
∇P(X|N) that can be estimated using finite differences. We tried the following approach.

Note that for any vectora we havea ∝ ∑n n · 〈n,a〉 where unit vectorsn are summed
over all possible directions (or points on a unit sphere). Also, linear approximation of
photoconsistency functionP(X|N) implies

〈∇P(X|N),n〉 ∝ P(X + ε ·n|N)−P(X|N) (15)

for sufficiently small constantε. Therefore,

∇P(X|N) ∝ ∑
n

n · [P(X+ ε ·n|N)−P(X|N)].

In particular, for methods using vector fields as in Section 2.3 one can use

〈∇P(X|N),N〉+ ∝
(

∑
n

< n,N > ·[P(X + ε ·n|N)−P(X|N)]

)+

.

In practice, photoconsistency can be very shallow or thin around highly-textured sur-
faces. Then, photoconsistency function may be non-differentiable there just like function
|x| is not differentiable atx = 0. One possible solution is to compute “one-sided” deriva-
tives. We found that “one-sided” estimate of gradient of photoconsistencyP(X|N) works
somewhat more robustly in practice.

One-sided estimate of gradient can be computed as follows. For any vectorsa andN
we have

a ∝ ∑
n

n · 〈n,a〉 ≈ ∑
n:〈n,N〉>0

n · 〈n,a〉+ ∑
n:〈n,N〉<0

n · 〈n,a〉
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= ∑
n:〈n,N〉>0

n · 〈n,a〉+ ∑
n:〈n,N〉<0

(−n) · 〈−n,a〉

= ∑
n:〈n,N〉>0

n · 〈n,a〉+ ∑
n:〈n,N〉>0

n · 〈n,a〉

that implies
a ∝ ∑

n:〈n,N〉>0

n · 〈n,a〉

Then, (15) gives “one-sided” finite difference estimate of photoconsistency gradient

∇P(X|N) = ∑
n : 〈n,N〉>0

n · [P(X+ ε ·n|N)−P(X|N)] (16)

and an estimate of a dot product in (8) becomes

〈∇P(X|N),N〉+ ∝
(

∑
n

< n,N >
+ ·[P(X + ε ·n|N)−P(X|N)]

)+

. (17)

5.2 Tests with Complex-based Regularization of Photoflux

In the absence of any scene approximation, [20] treats visibility and photoconsistency
P(X|N) of a patch as functions of its position and orientation, only. In [20] all cameras
with viewing directions lying within a certain angle from the normal contribute equally
to the photoconsistency. In this work, we use photoconsistency measure similar to the
image-based approach [30, 25] where visibility weightswk in (12) are proportional to the
area of the projection of a unit patch at given point with given orientation onto the image
k. We also account for the sampling artifacts of photoconsistency function in a similar
way to [19].

To find the globally optimal shape, we subdivide the approximate bounding box with
9 families of parallel planes. As a result, we obtain aCW-complexcomprising polyhe-
dral cells and the facets separating cells from each other. For each facet, we distinguish
between two faces of this facet having opposite orientations. For every oriented facetF
a regularized cost (10) is computed based on the facet’ area,position, and normal orien-
tation. The minimum of a regularized cost (10) over all shapes comprised from the cells
of the CW-complex can is efficiently found using a variant of amin-cut algorithm [4]
applied to the graph, which is dual to theCW-complex[20].

Non-deterministic photoflux: Integrating functional (5) into complex-based regular-
ization algorithm above is straightforward. One can estimate vectorvX at each facet and
then introduce directed costs for an n-link corresponding to this facet as described in [17].
This work guarantees that the corresponding energy is submodular and that the global
minima can be computed via max-flow/min-cut algorithms, e.g. [4].

In our experiments, we use complexes with 5–10 million of cells, with a typical run-
ning time of few minutes on a P4-2.8 architecture. The results are presented on the figures
4, 3, 5. For the benchmarking on Figure 4, we used similar photoconsistency measure for
all three algorithms. The same method [20] without photofluxwas used for the energy-
based reconstruction in column c). We did our best to tune theparameters for all three
methods. Empirically, photoflux-based optimization demonstrated the least sensitivity to
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Figure 3: Results of our method for thetoothpastesequence. Note the sharp top of the
tube. The surface also exhibits significant non-lambertianreflectivity effects. Top-right
is the profile slice of a vector field. A strong photoflux vectorfield appears in the most
difficult part (top) of the tube. Bottom row - two views of the reconstruction.

(a) Original scene (b) Space carving (c) Minimum surface (d)Photoflux

Figure 4: Comparison of different methods for multiview reconstruction on the fox and
camel sequence. Typically, space carving generates noisy results while minimum surface
methods oversmooth the shape. Adding maximization of photoflux into energy-based
methods for 3D reconstruction allows to accurately restorethin protrusions and other fine
details of the shape (ears of camel and a long tail of the fox).

Figure 5: Results of our method on standardgargoyleand handsequences. Note the
complex topology of the gargoyle and the weak texture of the hand. Please, refer to other
publications using these sequences for benchmarking.
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(a) Hand (b) Camel

Figure 6: Regularized photoflux (4) results via global graphcuts optimization on a com-
plex on standardhandand our owncamelsequences. Blue facets correspond to non-
submodular pairwise energy terms. Discretization demonstrates the actual resolution of
the complex. See Figures 4 and 5 for original “hand” and “camel” images.

the parameter variation. Note, that thegargoyleandhandsequences (Figure 5) is a cour-
tesy of Prof. Kutulakos and have been serving as testing datasets in a number of works
(including [18, 19, 25]).

Local-visibility deterministic photoflux: Photoflux in (4) can also be integrated into
complex based regularization framework since each facet onthe complex has normal
N and∇P(X|N) can be evaluated when the complex is constructed. However, this ap-
proach separately evaluates two independent vectors∇P(X|N) and∇P(X|−N) for each
facet since its outward normal can be eitherN or −N and it is not know which one is
correct a priori. Once the flux penalties〈∇P(X|N),N〉 and〈∇P(X|−N),−N〉 are com-
puted for two possible orientations of the facet, we have to integrate them into pairwise
interaction between two cells sharing this fixed facet. In this case, however, the corre-
sponding energy is not guaranteed to be submodular as two penalties above are com-
pletely unrelated (computed from two different sets of cameras) and their relationship is
unpredictable. The corresponding binary energy can be approached with a number of
methods. We tested “truncation” approach as in [26] shown inFigure 6 where blue shows
facets where non-submodular interactions were observed. It is very interesting to test per-
formance of other optimization techniques for non-submodular energies like QPBO [2],
tree-reweighted message passing [16], belief-propagation [24], and other methods.

6 Future Work

We are working on iterative estimation of visibility for photoflux which can be achieved
via local improvement methods (e.g. level-sets [25], banded cuts [32], pde-cuts [5]), or
via discrete algorithms demonstrating intermediate solutions (push-relabel [9], pseudo-
flow[10], active cuts [11]). It is also interesting to compare our results with explicit graph
cuts on complexes [20] with implementing regularized photoflux via implicit graph cuts
techniques [3, 17]. In general, there are also other methodsfor computing vector fields
that can estimate photoconsistency flow or surface normals defining our photohull shape
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prior. Such dense or sparse fields could be computed from robust feature detection [22] or
from approximate disparity maps. Our technique can also integrate additional reconstruc-
tion cues. In particular, it is clear how to integrate “silhouettes” if available (for example
when background subtraction is feasible). For example, this can be done by adding a re-
gional bias to visual hull [29]. There are obvious extensions to “shape-from-motion” with
moving cameras and to dynamic applications with moving objects. In this case, efficient
optimization methods using flow [15] or cut recycling [11] can be employed in the context
of graph based optimization. 4D graph constructions for dynamic applications are easy to
envision as well. Possible memory requirement issues can beaddressed with hierarchical
[21, 11], narrow-banded [32], and other local refinement techniques.
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