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Abstract

Our work was inspired by recent advances in image segmentatiere flux-
based functionals significantly improved alignment of cbfundaries. We
propose a novgbhotofluxfunctional for multi-view 3D reconstruction that
is closely related to properties of photohulls. Gulrotohull prior can be
combined with regularization. Thus, this work unifies twojonaroups of
multiview stereo techniques: “space carving” and “defdofeanodels”. Our
approach combines benefits of both groups and allows to eedime shape
details without oversmoothing while robustly handlingseiPhotoflux pro-
vides an intelligent ballooning force helping to segmei ttructures or
holes. We propose a number of different versions of photdfiased on
global, local, or non-deterministic visibility models. i&e forms of photoflux
can be easily added into standard regularization techside@r other forms
we propose new optimization methods. We also show that fiogtoaxi-
mizing shapes can be seen as regularized Laplacian zessiogs.

1 Introduction

The reconstruction of 3D shape from a set of its viems|tiview reconstructionis one
of the fundamental problems in computer vision. In this paywe assume that all views
are registered within the global coordinate system, suahftr any 3D pointX € %2 it

is possible to find its projection onto each of the views.

The majority of multiview shape-from-photoconsistencytheels fall into two cate-
gories: greedy space carving approaches aiming at reogveraximal photoconsistent
shapes, photohulls, and energy-based methods searchisgrfee regularized surface
with good photoconsistency (Figure 4b&c). Normally, eryebgised methods achieve
better surface quality by adding regularization into theorestruction process removing
noise. However, an explicit bias towards maximal photoistest surface, i.e. photohull,
allows space carving to recover more complex geometrietoemutperform energy-based
methods on the scenes with thin, protruding, and/or teldasearts.

This work is in many respects inspired by the recent progressage segmentation,
which is another shape reconstruction problem in low-l@igbn sharing a lot in com-
mon with multiview reconstruction. Similarly to multivieveconstruction, a number of
greedy methods such as thresholding or region growing theg dominated in the field
of image segmentation, were replaced with regularizedmahideformable surface ap-
proaches. However, standard minimum surface methods fagensegmentation often
oversmooth thin structures and undersegment blurred lzwigsd which are similar to
problems of current energy-based multiview reconstruatiethods.

Recently, new energy-based approaches based on flux itikegnave been proposed
for image segmentation [31] and significant improvemenegnsentation of thin objects
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Figure 1: Two methods for computindnotoconsistency flowector fields (Sec.2.3) in 3D
volumes. One camera view of a 3D scene is shown in (a) and k&)spectrum of colors
in (b-d,f-h) indicates divergence of vector fields in oneslof the volume. Green color
corresponds to zero divergence. Pictures (b-d) illustvatgor fields based on average
photoconsistency gradients (7) and pictures (f-h) showéexed” surface normals (9).

and in alignment of object boundaries has been reportedseTagproaches optimize the
combination of a Riemannian area/length and the flux of aovdild normally com-
puted from the gradients of a gray-scale image. The statkeoétt in two problems is
summarized in the table shown below.

Greedy methods | Minimal/deformable | Flux-based
surfaces methods
Image Thresholding[27] | Snakes[12] Level-sets[31]
segmentation | Region growing[1] | Level-sets[23] Graph cuts[17]
Graph cuts[3]
Multiview Voxel coloring [28] | Mesh-based [7] This
reconstruction| Space carving[18] | Level-sets[8, 30, 25] work
Graph cuts [29, 32, 20

This paper proposes flux optimization for multiview recoustion. We also propose
methods for calculating vector fields from the gradientshaf photoconsistency func-
tion that allow to bias reconstructed surfaces towardsqshdl (Figure 1). We demon-
strate that integrating flux of such fieldshotoflux into the reconstruction process al-
lows to recover thin and textureless parts of objects. Rhotean be easily integrated
into regularization-based methods for multiview recamsion. We propose a humber
of novel multiview reconstruction techniqgues combiningilux and surface regular-
ization. Such techniques can use both global and local amtion methods such as
level-sets or graph cuts. We prove the concept of photoflpementally by comparing
reconstruction results with and without photoflux.

2 From photohulisto photoflux optimization

The concept ophotohull[18] is based on an “oracle” that makes “yes” or “no” decision
about photoconsistency of any given point on the currerfasar The output of space
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carving algorithmphotohull will depend on a threshold for making hard decisions about
photoconsistency. Like “region growing” is sensitive tedking” through weak spots on
object boundary, space carving is not robust to noise orudgeties on object surface
that will often result in “leaking” and eventual cascadimgson of the shape.

However, space carving has one significant advantage oisimgxminimal surface
methods for multiview stereo. Space carving can recorstiircobjects or fine protrud-
ing details of the shape that previous energy based metbadso oversmooth. Below
we propose a surface functional for multiview reconstarcthat avoids shrinking bias
of standard regularization-based techniques. Our fortioumlaf multiview reconstruction
problem is motivated by the fact that a surface of a photashdluld have large flux of
photoconsistency gradients, that we also phathtoflux

Photoflux allows to integrate a bias to photohull into regakgtion methods for multi-
view stereo. Recent results in image segmentation sudggsintcorporating flux-based
functionals into local and global regularization methodstsas level-sets [31, 13] and
graph cuts [17] significantly improved alignment of segnsemith object boundaries.

2.1 Photoflux and global visibility

For now, assume a fixed surfae Let p(X|S) be somecolor variancefunction mea-
suring the deviation between the coldgs..., |1 of a pointX in different views given
visibility of X defined by the shag®(for example, this could be a current solution in an
iterative algorithm). Some examples of color variance messare mentioned in Sec-
tion 3.3. Under a Gaussian noise assumption, the likelilmf@dsurface at poinX to be
photoconsistent with the images is

P(X|§) = Pr(I},... 10X € §) O exp<%‘|zs)) @)
whereo is the noise variance. We will use this likelihood functibndughout the paper.
We will simply refer to (1) as @hotoconsistency function

Instead of (1) space carving algorithm considers a binaoggtonsistency function

s [ 1 ifpX|§<o
P(X|S)_{ 0 if p(X|§ >0

whereg is a photoconsistency threshold. The algorithm can be degials a successive
carving of inconsistent voxel¥ such thatP(X|S) = 0 and a simultaneous update $f
Therefore, space carving algorithm converges to sisfphotohull) that is a boundary
between points witl?(X|S) = 1 and points wittP(X|S) = 0.

In the context of our non-deterministic photoconsistenayction (1), a boundary
of a photohull is characterized by a large gradienP¢X|S) directed from exterior of
photohull to its interior. Based on this observation, wepmge the following functional
for energy-based multiview reconstruction

PHOTOFLUXI : F(S)=- /;(DP(X|S),NX>dS (2)

whereNy is an outward looking unit normal of surfa&at pointX, and(-,-) is a scalar
product that does not have to be necessarily Euclidean tibnat(2) corresponds to flux
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of photoconsistency gradients through the surface. To be,she call this functional a
photofluxthrough an oriented surfa&.

Remember that reconstruction of photohulls using spacgrgaalgorithms does not
include any regularization. Analogously, optimizationfhfx alone does not provide
any regularization either [17]. Divergence theorem sugtiest flux can be seen as an
“intelligent” regional balloon force. To add regularizati, we augment the functional (2)
with an area surface term. This term can correspond eittend¢tidean aredsdSor to a
photoconsistency-based area, used in other energy-bashdas/spo (X|S)dS

2.2 Photoflux and local visibility

In case of convex shapes we h&(&|S) = P(X|Nys) whereNysis an outward normal of
a surface patch containing poidtand

P(XIN) = Pr(I%, ... IT[X,N) O exp(p(;;!\'» @3)
is a photoconsistency of poiktbased on itéocal visibility [20] defined by a given surface
normalN. Clearly, photoconsistend(X|N) should be computed from cameras located
in the half-space defined by a tangent plane at piand its outward normail.
Thus, convexity of shap@impliesOP(X|S) = OP(X|Nx) and photoflux of such shape
can be written as

PHOTOFLUXII : F(S) = —/S(DP(X|NX),NX)dS. 4)

For general non-convex shap8®quation (4) is an approximation of the definition of
photoflux in (2). In case of occlusions due to non-convexftgltape (e.g. in case of
multiple objects) we havB(X|S) > P(X|Nx) since some cameras used to compute pho-
toconsistency based on local visibility contribute an ert©ur experiments show even
local visibility approximations like (4) handle occlus®gracefully.

2.3 Photoflux and non-deterministic visibility

Note that the earlier two definitions photofluxare based on vector fields of gradients
OP(X|S) or OP(X|N). These vectors are defined only at podten some given surface
Sor on a given local patch with norm&l. The surface or a patch must be fixed in
order to estimate visibility of poinX before photoconsistend(X|S) or P(X|N) can be
computed. We also assume that small perturbations of offj@gte neaX do not change
visibility so that the gradients of photoconsistency camveuated ak.

This section provides a more general definition of photoflurstead of computing
visibility of point X deterministically for a given surface or a patch, we assuomes
probability distribution PfW|X) for possible values of visibilityV at any given poink.
Note that visibilityW = (wx, ..., W) is a vector of non-negative weightg > 0 describing
correlation between intensit§ of a pixel in camera where pointX € %° projects and
a color of pointX assuming it belongs to some surface.

1The orientation oSis defined by a field of its “outward” normals.
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Figure 2: Reconstruction of a cube. Divergence of estimpherloconsistency gradients
is shown in (b) and (c). The images of divergence demonstagigarent contours” of
shape features (sharp corners) or surface texture feates meted can be seen as
regularization of Laplacian zero crossings of averagequuntsistency (see Sec. 3.2).

The most general definition of photoflux in this paper is netttxd by flux-based shape
priors for image segmentation [17]. Our “photohull shagemiis based on

PHOTOFLUXIII : F(S = —/S<vx,Nx>dS. (5)

where a field of vector$vx } describephotoconsistency flawhat is, direction and rate
of increase in photoconsistency at every pa{ntOne way to obtain such vectors is to
compute expected gradients of photoconsistency by aveyamgiknown visibility out

Vg = % OP(X|W) - PW|X). (6)

Functionals (2) and (4) are special cases of (5) when vityilaf X is deterministic.
We also suggest a simpler but more practical version of gootsistency flow

Vx = ZDP(X|N)-Pr(N|X) (7

where visibility is represented by a possible outward ndrdigection N. A possible
heuristic for estimating probability B¥|X) in practice could be based on gradients of
photoconsistency

Pr(N|X) O (OP(X|N),N)" (8)

where(,)" is a positive part of the dot product. Figures 1(b-d) and 2 afestrate vector
fields computed according to equations (7) and (8).

Equation (8) requires a normalization multiplier to maka irue probability distri-
bution. In practice, however, this may cause “division byoZgroblems which can be
avoided by truncating a vector field where the multipliesgeb small. This “division by
zero” corresponds to points where surface is unlikely te pasl “visibility” is ill-defined.
Practically speaking, equation (8) without any normal@agenerates very similar pho-
toconsistency flowgvx }. This heuristic is also easier to implement since no “dewisi
by zero” numerical problems arise.
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In general, there are other options for computing vectgrfor photohull prior (5).
For example, we also experimented with vector fields

vx = %N - Pr(N|X). 9)

shown in examples of Figure 1)(e-h). Vector fields could &lsmbtained from approx-

imate and/or or sparse disparity maps. Such maps can be tednatueach camera by
evaluating correspondences with nearby cameras usingwiase stereo methods or
robust feature matching.

3 Properties of photoflux optimization

The definitions of photoflux in (2) and (4) use deterministgihility and the correspond-
ing vector fields are defined only on a surface of any fixed shijmee general form of
photoflux (5) allows non-deterministic visibility and thercesponding vector field can
be estimated at any poit € 3. Despite these obvious distinctions, there are many
important common properties of different forms of photofluttich we describe in this
section. For simplicity, we discuss these properties irctireext of equations (5) and (7).

3.1 Combining photoflux and regularization

Standardspace carvingnethods for photohull reconstruction are analogous to tagap
region-growing techniques in image segmentation and tloegat include any surface
regularization. Section 2.1 “derived” photoflux functibfram properties of photohulls.
Thus, it should not be surprising that photoflux maximizaiigelf does not imply any
regularization. As discussed in [17], flux optimization guévalent to thresholding a
divergenceof the corresponding vector field

. ovy Ovy 0V,

diviv)=0-v= X + dy + a7
In the context of Figure 2, “thresholding” implies that atixels of blue color (negative
divergence values) should be selected as surface intdti@.clear that this approach
would generate noisy and/or ambiguous results. Note thaotity difference of space
carving approach would be to carve away exterior voxelgistafrom a box containing
the object. This exterior “region growing” should stop orubdary between the red and
blue voxels (see Figure 2). Similar to “region growing” madis in image segmentation,
space carving can leak through a single weak spots on antdigjendary.

Unlike space carving, our approach to multiview reconstonalescribes object bound-
ary via a cost functional, photoflux. In contrast to photéguphotoflux maximizing
shapes can be regularized by combining photoflux (2) or (8) any surface regulariza-
tion functionals typically used in multiview reconstruai For example, we can combine
photoflux with an integral of photoconsistency over the veh®irface obtaining a regu-
larized photoflux functional

E(S) = —./S‘<DP(X|NX),Nx>dS+/\ -./;p(X|Nx)dS (10)
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Alternatively, it might also be possible to regularize pifatx via Euclidean area of
the surfaces. It is also possible to use non-Euclidean dot products indéfanition of
photoflux that may be based on photoconsistency.

Optimization of an energy combining photoflux and regukian as in (10) should
reconstruct fine object details while handling noise. Ptatacan be seen as an intelli-
gent balloon force making minimal surfaces better aligriwtitin protrusions or cavities.
Combining flux and regularization has similar effects in ga@egmentation [31, 13, 17].

3.2 Photoflux and regularized Laplacian zero-crossings

Integrating flux of image gradients into image segmentatiwergy results in better align-
ment with object boundaries. For example, [13] motivates-HBased approach to edge
detection by connecting it with Laplacian zero-crossingfd which are image process-
ing classics. Analogously, optimization of photoflux camegbetter alignment of 3D
reconstruction results with an object surface (or its photi.

This section shows that we compute regularized Laplaciema@ssings of the like-

lihood functionP(X) := Pr(I%, ..., 1| X) for observed intensities given thétis a point on
a surface of an object. We have

P(X) = Pr(1%,...,10|X) = %Pr(|>l<,...,|>'?|x,N) -Pr(N|X) = ;P(X|N) Pr(N|X) (11)

whereP(X|N) is the photoconsistency function in (3) andR}X) is a conditional proba-
bility function for a normal of a surface at poiXtgiven that the surface is passing through
X. Generally speaking, averaging owerepresents averaging over different possible vis-
ibilities of point X in the cameras observing some object from different viewBusT
Pr(N|X) can be interpreted as a probability of a given visibility fmint X if it is known
that it belongs to some surface.

Typically, global visibility of pointX on surfac&Sdoes not change much if the surface
is slightly nudged aX. Similarly, local visibility of a surface patctiSshould not change
if it moves a bit while preserving its orientation. Theredpit is natural to assume that
OPr(N|X) = 0 (differentiation oveX). Then, the gradient of our likelihood function

DFT(X) =0Pr(l3, ..., 1I9X) = %DP(X|N) -Pr(N|X) = vx

coincides with vector fieldk in (7). Ostrogradsky-Gauss theorem, also knowdiasr-
gence theoremmplies that maximization of photoflux (5) is equivalentttwesholding
regions with positive divergenalv(vx ) from regions with negative divergence. Since

div(vx) = O-vx = 0-OP(X) = AP(X)

then combining photoflux optimization for vector field in (7) with surface regulariza-
tion as in Section 3.1 can be seen as computing regularizeidtian zero-crossings of

likelihood P(X).

3.3 Integrating apparent contoursand texture features

This subsection demonstrates that photoflux based melt-véconstruction implicitly
relies onapparent contour@and on detecting object textural features. To be specific,
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assume that color variance is measured by function
P(X|NX):ZWk'(|>§*|_X)2a I‘X:Zwkw& (12)

or by o
PIXING) = 5 wi-wj - (I — 1%)° (13)
1]
Wherel>‘§ is intensity of a pixel in camerawhere poiniX € %3 projects lx is a weighted
average of such intensities, ang is a non-negative weight describing visibility of point
X in camerak. Typically, visibility wy is large for a camera observing surface point
with normalNx under a small angle ang approaches zero for angles near 90 degrees.
Note that color consistency penalty as in (12) was propase8D reconstruction in [30]
and functionals like (13) were proposed in [25] (image-dasgularization).
For both (12) and (13), differentiation of photoconsisteR¢X|Nx) in (1) gives

OP(X[Nx) O P(X|Nx)- ;wk- (Ix—1%) - 01§ (14)

WhereD|>k( is a gradient of an image in camekat a pixel where 3D poinX projects.
We treatCl as a 3D vector since k-th camera image plane orientatic#iis known.
Expressions analogous to (14) can be derived for other galdance models.

Equation (14) breaks down the gradient of photoconsistimioya linear combination
of vectors contributed by individual cameras where piris visible, that isn > 0. It
is not surprising that each camera contribution is basedsoimiage gradienfllX. For
example, a small number of cameras in Figure 2(b) allowsdassaight “rays” of points
with large gradients of photoconsistency. Each “ray” indfg2(b) is formed by points
X € Z%° projecting onto the same pixel in one of the cameras whergéngaadient is
large. Note that multiplication by a fact®(X|Nx ) in (14) discards gradients in all points
X € #° that are not photoconsistent.

Computing a gradient of photoconsistency automaticaltgiols a “good” linear com-
bination of image gradients (14) appropriate for estingasinrface normals. Interestingly,
each camerkindividually does not know how to interpret its image gradg In general,
there are two possible reasons for a large image gradiemyagigen pixel; the camera
could observe either a boundary between an object and a tmacid)(apparent contour)
or a textural detail on a surface. Figure 2(b) demonstrdtasrays of gradients from
different cameras intersect at points that align with arectbgurface either at itshape
featuresor at itstexture featuresNote that by computing gradients of photoconsistency
we automatically detect both types of features and use tisesurdace “anchors”. Larger
number of cameras, e.g. in Figure 2(c), gives tighter aligninof large photoconsistency
gradients with such anchors producing a close outline ofrtieobject surface.

4 Efficient algorithms

The photoflux optimization can be plugged into virtually @amergy optimization frame-
work. In particular, level-sets [8, 25] and banded grapts ¢82] reconstructions can
include the photoflux optimization either in the determtigisorm (2) or in the proba-

bilistic form (5). In the former case, the current soluticgfidles the shape estimafe

determining global visibility.
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Local visibility photoflux in (4) allows to use global optizdtion methods using ex-
plicit graph cuts on a complex [14, 20]. However, the coroggling energy is not guar-
anteed to be submodular. Thus, it may be necessary eithrentate supermodular terms
as in [26], or to use approximation methods like QPBO [2].

Non-deterministic approach to photoflux (5) can be implete@iy global optimiza-
tion methods based on either implicit surface represemt#ti7] or complex-based graph
cuts [14]. Itis also interesting to investigate global noeth that update estimate of visi-
bility once parts of a surface are recovered in optimizati@ihods that generate partial
solutions (e.g., push-relabel [6], pseudo-flows [10], diveccuts [11]).

5 Experimental Results

To validate the general concept of photoflux in this paper,present our results for
complexbased multiview reconstruction [20] after integratingofflux into it. This
technique allows to obtain the global minimum of a discedizersion of regularized
photoflux functionals as in (10). In particular, we tested fiwrms of photoflux (4) and
(5). We only briefly describe complex construction and arinoization algorithm pre-
sented in [20] focussing on the properties of our new regaddrphotoflux functional.

5.1 Estimating Photoconsistency Gradients

Our experimental results were obtained using vector fiefgshotoconsistency flow as
in (4) and (5,7,8). The main component of these formulas @tqitonsistency gradient
OP(X|N) that can be estimated using finite differences. We trieddheviing approach.

Note that for any vectos we havea O 5, n- (n,a) where unit vectors are summed
over all possible directions (or points on a unit sphere)soAlinear approximation of
photoconsistency functid®(X|N) implies

(OP(X|N),n) O P(X+¢&-n|N)—P(X|N) (15)
for sufficiently small constard. Therefore,

OP(X|N) O Z n-[P(X+¢&-n|N) — P(X|N)].
n
In particular, for methods using vector fields as in Sectidhche can use
+
(OP(X|N),NY* O <z <n,N > [P(X+¢&-n|N)— P(X|N)]) :
n

In practice, photoconsistency can be very shallow or thimad highly-textured sur-
faces. Then, photoconsistency function may be non-difféable there just like function
x| is not differentiable ak = 0. One possible solution is to compute “one-sided” deriva-
tives. We found that “one-sided” estimate of gradient oftplonsistency(X|N) works
somewhat more robustly in practice.

One-sided estimate of gradient can be computed as folloarsaify vectora andN

we have
at yna =~ z> n-(n,a)+ Z> n-(n,a)
n n:(n,N)>0 n:(n,N)<0
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that implies

a QO Z> n-(n,a)
n:(n,N)>0

Then, (15) gives “one-sided” finite difference estimate lobfconsistency gradient

OP(X|N) = z n-[P(X+¢€-n|N) — P(X|N)] (16)
n: (n,N)>0

and an estimate of a dot productin (8) becomes

(OP(X|N),N)™ O <z <n,N>*.[P(X+e&-n|N)— P(X|N)])+. 17)

5.2 Tests with Complex-based Regularization of Photoflux

In the absence of any scene approximation, [20] treatsiliigiland photoconsistency
P(X|N) of a patch as functions of its position and orientation, omiy[20] all cameras
with viewing directions lying within a certain angle frometmormal contribute equally
to the photoconsistency. In this work, we use photoconsisteneasure similar to the
image-based approach [30, 25] where visibility weightsn (12) are proportional to the
area of the projection of a unit patch at given point with giegientation onto the image
k. We also account for the sampling artifacts of photocoesist function in a similar
way to [19].

To find the globally optimal shape, we subdivide the appr@ataounding box with
9 families of parallel planes. As a result, we obtai@4/-complexcomprising polyhe-
dral cells and the facets separating cells from each otr@re&ch facet, we distinguish
between two faces of this facet having opposite orientatidior every oriented facét
a regularized cost (10) is computed based on the facet’ positjon, and normal orien-
tation. The minimum of a regularized cost (10) over all slsag@mprised from the cells
of the CW-complex can is efficiently found using a variant ahan-cut algorithm [4]
applied to the graph, which is dual to t&&V-complex20].

Non-deterministic photoflux: Integrating functional (5) into complex-based regular-
ization algorithm above is straightforward. One can esnvactorvx at each facet and
then introduce directed costs for an n-link correspondirtfis facet as described in [17].
This work guarantees that the corresponding energy is sdblaoand that the global
minima can be computed via max-flow/min-cut algorithms, gig

In our experiments, we use complexes with 5-10 million ofs¢&lith a typical run-
ning time of few minutes on a P4-2.8 architecture. The resrk presented on the figures
4, 3, 5. For the benchmarking on Figure 4, we used similarqduotsistency measure for
all three algorithms. The same method [20] without photoflas used for the energy-
based reconstruction in column c). We did our best to tungé#rameters for all three
methods. Empirically, photoflux-based optimization destmated the least sensitivity to
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Figure 3: Results of our method for theothpastesequence. Note the sharp top of the
tube. The surface also exhibits significant non-lambertidiectivity effects. Top-right
is the profile slice of a vector field. A strong photoflux vedietd appears in the most
difficult part (top) of the tube. Bottom row - two views of theconstruction.

(a) Original scene (b) Space carving (c) Minimum surface Rtatoflux
Figure 4. Comparison of different methods for multiviewaastruction on the fox and
camel sequence. Typically, space carving generates ressits while minimum surface
methods oversmooth the shape. Adding maximization of ghotanto energy-based
methods for 3D reconstruction allows to accurately restareprotrusions and other fine
details of the shape (ears of camel and a long tail of the fox).

1IN

Figure 5: Results of our method on standgatgoyleand hand sequences. Note the
complex topology of the gargoyle and the weak texture of tredh Please, refer to other
publications using these sequences for benchmarking.
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(a) Hand (b) Camel

Figure 6: Regularized photoflux (4) results via global grapts optimization on a com-
plex on standardiandand our owncamelsequences. Blue facets correspond to non-
submodular pairwise energy terms. Discretization demmatest the actual resolution of
the complex. See Figures 4 and 5 for original “hand” and “daimeges.

the parameter variation. Note, that th@&goyleandhandsequences (Figure 5) is a cour-
tesy of Prof. Kutulakos and have been serving as testingel@én a number of works
(including [18, 19, 25]).

Local-visibility deterministic photoflux: Photoflux in (4) can also be integrated into
complex based regularization framework since each facahercomplex has normal
N and OP(X|N) can be evaluated when the complex is constructed. Howéisrap-
proach separately evaluates two independent ve€B(X|N) andOP(X| — N) for each
facet since its outward normal can be eitiNeor —N and it is not know which one is
correct a priori. Once the flux penalti€SP(X|N),N) and(OP(X|— N),—N) are com-
puted for two possible orientations of the facet, we haventegrate them into pairwise
interaction between two cells sharing this fixed facet. is tase, however, the corre-
sponding energy is not guaranteed to be submodular as twaltigsnabove are com-
pletely unrelated (computed from two different sets of ceameand their relationship is
unpredictable. The corresponding binary energy can beoapped with a number of
methods. We tested “truncation” approach as in [26] shoviidgnre 6 where blue shows
facets where non-submodular interactions were observiedvéry interesting to test per-
formance of other optimization techniques for non-subnterdenergies like QPBO [2],
tree-reweighted message passing [16], belief-propayfti], and other methods.

6 Future Work

We are working on iterative estimation of visibility for ptedlux which can be achieved
via local improvement methods (e.g. level-sets [25], bdndlés [32], pde-cuts [5]), or
via discrete algorithms demonstrating intermediate smist(push-relabel [9], pseudo-
flow[10], active cuts [11]). It is also interesting to comea&ur results with explicit graph
cuts on complexes [20] with implementing regularized pHatovia implicit graph cuts

techniques [3, 17]. In general, there are also other metfardsomputing vector fields

that can estimate photoconsistency flow or surface nornedisidg our photohull shape
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prior. Such dense or sparse fields could be computed fronstédmiure detection [22] or
from approximate disparity maps. Our technique can alsmiatte additional reconstruc-
tion cues. In particular, it is clear how to integrate “sillettes” if available (for example
when background subtraction is feasible). For exampls,d¢an be done by adding a re-
gional bias to visual hull [29]. There are obvious extensim‘shape-from-motion” with
moving cameras and to dynamic applications with moving abjeln this case, efficient
optimization methods using flow [15] or cut recycling [11hdae employed in the context
of graph based optimization. 4D graph constructions foiatyic applications are easy to
envision as well. Possible memory requirement issues caddhessed with hierarchical
[21, 11], narrow-banded [32], and other local refinemenrttégues.
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