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Abstract

It is commonly believed that higher order smoothness
should be modeled using higher order interactions. For ex-
ample, 2nd order derivatives for deformable (active) con-
tours are represented by triple cliques. Similarly, the 2nd
order regularization methods in stereo predominantly use
MRF models with scalar (1D) disparity labels and triple
clique interactions. In this paper we advocate a largely
overlooked alternative approach to stereo where 2nd order
surface smoothness is represented by pairwise interactions
with 3D-labels, e.g. tangent planes. This general paradigm
has been criticized due to perceived computational com-
plexity of optimization in higher-dimensional label space.
Contrary to popular beliefs, we demonstrate that repre-
senting 2nd order surface smoothness with 3D labels leads
to simpler optimization problems with (nearly) submodular
pairwise interactions. Our theoretical and experimental re-
sults demonstrate advantages over state-of-the-art methods
for 2nd order smoothness stereo. 1

1. Introduction

Dense stereo matching is one of the core problems of
Computer Vision. In recent years considerable progress has
been made due to the availability of powerful regularizers
for handling ambiguous and noisy data. Perhaps the most
common are the first order regularization priors [4, 7, 6].
One reason for their popularity is that when applying move-
making algorithms such as α-expansion [4] or fusion moves
[8] they often result in submodular moves, allowing effi-
cient computation using min-cut/max-flow algorithms [4].

Many basic optimization methods for stereo use scalar
(1D) disparity labels. Such methods often implicitly as-
sume fronto-parallel planes. For example, standard piece-
wise smooth (e.g. truncated linear or quadratic) pairwise
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regularization potentials assign higher cost to surfaces with
larger tilt [4]. To model surfaces more accurately Birchfeld
and Tomasi [1] introduced 3D-labels corresponding to ar-
bitrary 3D planes, but this approach is limited to piecewise
planar scenes. To address more general scenes our paper
follows the popular trend of using 2nd derivative surface
regularization for stereo [9, 15].

There are two ways of modeling such higher order
smoothness potentials. Woodford et al. [15] retain the scalar
disparity labels while using triple-cliques to penalize 2nd
derivatives of the reconstructed surface. This encourages
near planar smooth disparity maps. The optimization prob-
lem is however made substantially more difficult due to the
introduction of non-submodular triple interactions.

In contrast, Li and Zucker [9] use 3D-labels correspond-
ing to tangent planes to encode 2nd order disparity map
smoothness as pairwise interactions. A similar idea was
also recently applied to surface reconstruction from sparse
point clouds [10]. Li and Zucker’s interaction penalizes two
terms. The first term computes the difference of the dispar-
ity assignment, and the disparity predicted by the neighbor-
ing tangent plane. (We show in this paper that this alone
actually corresponds to penalizing 2nd derivative.) The
second term penalizes the (squared) angular difference be-
tween neighboring tangent plane normals. This term en-
courages parallel assignments of tangent planes. The in-
teraction is non-submodular and the authors employ a be-
lief propagation algorithm to optimize it. In comparison to
Woodford et al. [15] that only use a disparity estimate at
each pixel, the approach by Li and Zucker [9] requires dis-
cretization of a much larger label space. Their discretized
3D-labels are precomputed as locally optimal deformed
windows with respect to the SSD measure [5], thereby dis-
regarding the assignments of neighboring pixels. As shown
in [15], this specific approach results in disparity maps that
are inferior to those of Woodford et al. The discussed lim-
itations of [9] may have helped to promote the general per-
ception of triple interactions of scalar disparity labels as a
superior approach for modeling 2nd order smoothness.

Bleyer et al. [2] use even higher dimensional labels to
represent surface models like b-splines. This makes it pos-
sible to precompute and penalize 2nd order smoothness via
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a unary term. There is however no smoothness interaction
between models and therefore it is not possible to combine
local models into global ones. The label space is even more
complex than that of Li and Zucker [9] and therefore re-
estimation of the surfaces is crucial for this approach.

In this paper we propose a new 3D-label stereo algo-
rithm encoding 2nd order smoothness of the disparity map
with pairwise interactions. While similar to Li and Zucker’s
general idea to reconstruct piecewise smooth surfaces from
local models (tangent planes), our algorithm resolves many
problems, see [15], associated with this approach. We show
how to properly measure 2nd derivative of the reconstructed
surface using pairwise cliques when the labels are tangent
planes. Instead of using a fixed set of locally precom-
puted tangents, we adaptively generate new surface propos-
als based on the current surface estimate. We also replace
a no-guarantee belief-propagation in [9] with QPBO-based
fusion similar to [15]. In contrast to the triple-cliques used
by Woodford et al. [15] we show that our formulation is
submodular when using planar proposals, and verify exper-
imentally that Roof duality [11] labels much more pixels
for general proposals with our formulation. Besides being
a simpler optimization problem we also demonstrate that
the running time is reduced. We show that the use of even
higher order labels (that encode higher order derivatives)
further extends the class of submodular functions. In ad-
dition we present a version of our method that works with
depth rather than disparity and, therefore, does not require
rectified cameras.

1.1. Optimization Background

Consider the optimization of an arbitrary second order
pseudo-boolean function (PBF) of n variables, usually ex-
pressed as,

min
x∈Ln

E
(
x
)
= min

x∈Ln

∑
p

Up

(
xp
)
+
∑

p,q∈N
Vpq
(
xp, xq

)
(1)

where N is some connectivity. Our goal is to find a mini-
mizer of (1). If L = {0, 1} and Vpq is submodular this can
be efficiently solved [4]. Even with Vpq non-submodular
roof-duality (RD) [3, 11] can be used. RD will give a par-
tial solution where labeled variables are guaranteed to be
correct for an optimal solution and some variables are left
unlabeled.

Lempitsky et al. [8] proposed a way to minimize (1)
when L = R. Given two assignments x0 and x1 we fuse
them into a new one with lower energy by solving

min
z∈{0,1}n

E
(
z · x0 + (1− z) · x1

)
, (2)

where · is element-wise multiplication. If we solve (2) us-
ing RD and then set z = 0 for all unlabelled variables the

autarky results in [11] gives us,

E (z · x0 + (1− z) · x1) ≤ min
(
E (x0) , E (x1)

)
. (3)

Therefore we can iteratively minimize (1) by proposing new
solutions and fusing them with the old solution.

The possibility to decrease the energy for each fusion
move is an attractive feature, however there is no guaran-
tee on how many variables will be labeled in each fusion
move. As will be shown in Section 5.1.1 a large fraction
of the variables might be unlabeled. For submodular fusion
moves we are guaranteed to label all variables. Minimizing
a submodular function is also faster in practice [11].

2. A Second Order Smoothness Prior for
Multi-View Stereo

In this section we present a second order smoothness
prior for dense multi-view stereo reconstruction. The idea
is similar to that of [9]. We will use 3D-labels to represent
the prior using pairwise cliques. To each viewing ray we
will assign a plane that locally represents the surface ge-
ometry close to the ray. The intersection between the ray
and the plane will be the estimated 3D point. By interpret-
ing the planes as a tangents of the viewed 3D surface we
can encourage smooth solutions by penalizing neighboring
3D-points that deviate largely from neighboring tangents.

2.1. Rectified Cameras and Disparity Maps

We will start by assuming that the cameras have been
rectified, since this allows us to work in disparity space. For
multiple views this does however place some restrictions on
the camera positions that are usually not fulfilled in general
image collections [13]. We will therefore relax this condi-
tion in Section 2.2.

Let p and q be to two neighboring pixels in the image I
and p, q be their image coordinates. The goal of stereo is to
estimate the functionD : I 7→ R that gives a disparity value
for each pixel in the image. To each pixel p we will assign
a tangent plane that locally approximates this function. We
can think of these tangents as samples of the disparity func-
tion and its derivatives. By the function TpD : I 7→ R we
will mean the tangent at the point p seen as a function of the
whole image, that is

TpD (x) = D (p) +∇D (p)
T
(x− p), (4)

where D (p) and ∇D (p) is the assigned disparity and dis-
parity gradient (with respect to the image coordinate sys-
tem) at pixel p. We define a pairwise interaction between
neighboring pixels as

Vpq = |TpD (q)−D (q) |, (5)

That is, Vpq measures the curve’s deviation from the tangent
plane, see Figure 1. Intuitively, if the surface is smooth then
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P = d(p)ph

Q = d(q)qh
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Figure 1. Left: Geometric interpretation of the smoothness term
for parallel viewing rays. Right: Smoothness term when the view-
ing rays are not parallel.

the tangent plane should be a good approximation. There-
fore we expect Vpq to be small for smooth surfaces. Using
the Taylor expansion

D (q) ≈ D (p)+∇D (p)
T
(q−p)+1

2
(q−p)T∇2D (p) (q−p),

(6)
where∇2D (p) is the Hessian at p, we see that

Vpq ≈ |
1

2
(q − p)T∇2D (p) (q − p)|. (7)

That is, Vpq measures the second derivative at p in direction
q − p of the underlying disparity function.

2.2. Regular Cameras

In many real world situations rectified cameras may not
be available. In such cases we work with depth rather than
disparity. However directly penalizing 2nd derivative of the
depth function is not a good idea. In general the projec-
tion of a plane will not yield a linear depth function unless
the camera is affine (which can be seen from (11) below).
Hence, such an energy would assign a 3D-plane a nonzero
penalty. Therefore we will instead measure the deviation
from the tangent plane along the viewing ray.

Let ph and qh denote the homogeneous coordinates
(with third coordinate 1) of the two pixels p and q. We
will assume a pinhole camera model where the center cam-
era has been calibrated and normalized to be of form [I 0].
Given a function d : I 7→ R+ that gives a depth for each
pixel the 3D points P and Q corresponding to p and q can
be computed (in regular Cartesian coordinates) using the
simple formulas

P = d(p)ph, (8)
Q = d(q)qh. (9)

By (np, ap), where np ∈ R3, ‖np‖ = 1 and ap ∈ R we
denote the tangent plane at p given by the equation

nT
p x+ ap = 0. (10)

Consider the intersection point Q′ between the viewing ray
at q and the tangent plane at p. We let Tpd : I 7→ R+

be the depth function of the tangent plane at point p, that
is, Q′ = Tpd (q) qh. We can calculate the tangent function
using

Tpd (q) = −
ap

nT
p qh

. (11)

(Here we are assuming that the viewing ray is not com-
pletely contained in the tangent plane.) Note that even
though this function represents a plane in 3D it is usually
not linear in q. In contrast disparity is inversely propor-
tional to depth and will therefore be linear.

To encourage smooth assignments we use the cost

Vpq = ‖Q−Q′‖ = |Tpd (q)− d(q)| ‖qh‖. (12)

The geometric interpretation of this expression can be seen
in Figure 1. Given the estimated tangent plane at p and the
depth at q the interaction computes the distance between the
estimated 3D point and the tangent plane along the view-
ing ray. The smoothness term will penalize deviations from
planes and thereby encourage solutions with small second
derivatives.

The interaction in (12) is very similar to (5) and the prop-
erties that we derive in Section 3 will hold for both interac-
tions.

3. Submodularity of Fusion Moves
In this section we will show that fusion moves [8] with

our interactions are often submodular. Given a current dis-
parity function D and a proposal function P the fusion
move allows pixels to change their labels from the tangents
of D to the tangents of P . In what follows we will use

Vpq(D,P) = |TpD (q)− P (q)| , (13)

to mean the penalty for assigning p the tangent plane from
D and q the tangent plane from P . Note that our energies
will also contain a similar term Vqp(P,D) and therefore the
penalty is symmetric. However for showing submodularity
it is sufficient to consider one of them at a time.

3.1. Candidate Planes

We first show that fusion moves where the candidate
function P is a plane result in submodular terms. The re-
sult is a simple consequence of the triangle inequality.

Proposition 3.1 If the proposal P is a plane then the fusion
with any function D is a submodular move.

Since P is a plane we have

TpP (q) = P (q) (14)

and therefore Vpq(P,P) = 0. Furthermore,



Vpq(D,D) = |TpD (q)−D (q)| (15)
= |TpD (q)− P (q) + TpP (q)−D (q)| (16)
≤ |TpD (q)− P (q)|+ |TpP (q)−D (q)| (17)
= Vpq(D,P) + Vpq(P,D) (18)

which shows that submodularity,

Vpq(D,D) + Vpq(P,P) ≤ Vpq(P,D) + Vpq(D,P), (19)

holds.

3.2. General Candidates

Next we derive some more general sufficient conditions
for submodularity of the fusion move.

Proposition 3.2 If both D and P are convex (or alterna-
tively both concave) between p and q then the interactions
Vpq and Vqp are submodular for the fusion move.

To see this we first note that if both D and P are con-
vex then they are both bounded from below by their tangent
planes. Specifically

D (q) ≥ TpD (q) (20)
P (q) ≥ TpP (q) . (21)

Using the above we now have

Vpq(D,D) + Vpq(P,P) = (22)(
D (q)− TpD (q) + P (q)− TpP (q)

)
≤ (23)(

|P (q)− TpD (q) |+ |D (q)− TpP (q) |
)
= (24)

Vpq(D,P) + Vpq(P,D). (25)

It is easy to see that the same statement is true if both P
and D are concave. In this case the inequalities in (20) and
(21) are switched which means that the signs of (23) are
switched.

3.3. A Discontinuity Preserving Energy

To make the energy discontinuity preserving we add a
threshold t to the interaction

Epq(D,P) := min(Vpq(D,P), t). (26)

In the case of a plane proposal P we see that

min(Vpq(D,D), t) ≤ (27)

min
(
Vpq(D,P) + Vpq(P,D), t

)
≤ (28)

min
(
Vpq(D,P), t

)
+min

(
Vpq(P,D), t

)
. (29)

Vpq(P,P) = 0 as shown earlier resulting in the inequality,

Epq(D,D)+Epq(P,P) ≤ Epq(D,P)+Epq(P,D), (30)

showing that planar proposals also generate submodular in-
teractions with this energy.

The result in Proposition 3.2 can fail for surfaces of high
curvature because of the added threshold. It is possible to
add extra constraints on the derivatives (e.q. Vpq(D,D) +
Vpq(P,P) ≤ t) to extend this result. However since we do
not explicitly check or enforce these in our implementations
we do not pursue this further.

4. General Order Smoothness Priors
In Section 2 we used tangent planes to create our smooth-

ness prior. It is possible to use higher order local models to
encode more complex priors. Let ApD be a Taylor approx-
imation of order n, then the interaction

Vpq(D,D) = |ApD (q)−D (q) | (31)

would be a n + 1 order smoothness penalty. At the same
time we can add a penalty for derivatives of order at most
n using only unary terms. For example, if we to each pixel
assign a quadratic function instead of a tangent we have an
interaction that penalizes 3rd derivatives. In this case 2nd
and 1st derivatives can be encoded into the unary term. As
in Proposal 3.1 it is easy to see that if our proposals fulfill

ApP (q) = P (q) , (32)

then the fusion move will be submodular. Hence the n’th
order surfaces give submodular interactions. For example if
we only use the zero order expansion (constant functions/
fronto-parallel planes) then we find that fusion moves with
constant depth proposals are submodular. This is the regular
version of α-expansion from [4]. Table 1 shows properties
for some different choices of labels.

5. Experiments
Next we evaluate the proposed framework on a couple of

multiple view stereo data sets. The energy that we use is of
the standard form

E(D) =
∑
p

∑
q∈N (p)

Epq(D,D) + µ
∑
p

Ep(D) (33)

where Epq is the smoothness term presented in Section 3.3.
In all following experiments the neighborhoodN is chosen
as 4-connectivity. We will use both the disparity version
(Section 2.1) and the depth version (Section 2.2). The pa-
rameter µ controls the tradeof between the smoothness and
data terms.



Label Pairwise Interaction Unary Term Submodular Proposals

Depth 1st derivative Depth Constant functions
Tangent planes 2nd derivative Depth, 1st derivative Constant 1st derivative

2nd order approximation 3rd derivative Depth, 1st, 2nd derivative Constant 2nd derivative
...

...
...

...

Table 1. Characterization of Pairwise interactions, unary terms and submodular proposals for different types of labels.

(a) (b) (c)

Figure 2. Results for the cloth sequence. (a) - Image, (b) - depth map using only the data term, (c) - depth map computed with regularization.

(a) (b) (c)

Figure 3. Results for the bowling sequence. (a) - Image, (b) - depth map using only the data term, (c) - depth map computed with
regularization.

The data term Ep is a unary term that depends on
the tangent plane at p. For this term we use normal-
ized cross correlation (NCC) computed at different possible
depth\disparities. For each depth we use a planar homogra-
phy to project one of the neighboring images into the center
image. Then we compute NCC of 3 × 3 patches (if a pixel
is outside the image boundary we assign it NCC zero). This
way we get a cross correlation function of depth for each
pixel. In principle we could make the NCC depend on the
tilt of the tangent as well, however storing the samples of
such a function would require lots of memory. We compute
NCC for every neighboring camera and take mean values
over the cameras to obtaining the final result. Occlusion is

modeled using the approach of [14].
Since our algorithm may assign depths/disparities that

are in between the sampled values we use quadratic interpo-
lation to represent the cost function at every possible depth.
We also add an extra cost to assignments of planes which
are roughly parallel to the viewing rays. The reason for do-
ing this is that we are unlikely to be able to see many pixels
from such planes (and if we do, the data term that we have
computed using fronto-planar patches is probably not accu-
rate). We us the extra cost

(1− nT
p vp)

2k, (34)

where np is the normal of the plane assigned to p and vp



is the direction of the viewing ray in p (in the 3D space the
viewing ray direction will be p/‖p‖ and in disparity space
(0, 0, 1)). The constant k is selected large enough so that the
penalty effects tangents with high tilt, in our experiments we
use k = 10.

5.0.1 Proposal Generation

To generate proposals we use similar heuristics to those of
[15].

• To generate planar proposals we randomly select a
point and a small neighborhood. Using the best local
maximum of the normalized cross correlation for each
viewing ray we create a 3D cloud to the neighborhood
and fit a plane using RANSAC.

• We also generate 2nd order surfaces using a similar
RANSAC approach as above.

• We use a filtering process that takes the current assign-
ment, computes the corresponding 3D points, and for
each pixel fits a plane to its neighboring 3D points.

• Finally we have a proposal that just in-
creases/decreases the depth/disparity of all proposals
with a small random step size.

5.1. Rectified Cameras

We first present results obtained on two of the well
known Middlebury stereo sequences [12], Cloth and Bowl-
ing see Figures 2-3. For their data sets we computed a depth
map for the middle image (nr 4) and used the remaining
6 images to compute the cross correlations needed for the
data term. We used the data weight µ = 40 and the thresh-
old t = 1 (see Secction 3.3) to generate these results. The
effects of the regularization term can be seen by comparing
the surface generated from the data term without regular-
ization (b) and the one with regularization (c) (the data term
is particularly weak in the bowling data set because of the
large texture less region).

5.1.1 Comparison to [15]

In this section we compare our regularization to the one
used by Woodford et al. in [15], hereafter called Global-
Stereo. GlobalStereo also penalize second derivative but
use triple cliques with scalar disparity labels. We will show
that switching to our regularization leads to simpler prob-
lem instances, without reducing the quality of the results.
The comparison is performed on the Middlebury data set
consisting of stereo pairs of rectified images.

In order to make a fair comparison we use data terms
computed as outlined in [15] for both methods in this ex-
periment. Furthermore we do not use any occlusion model
here since these are different for the two models.

Tsukuba Venus Teddy Cones

Our 0.065 % 0.0264 % 0.127 % 0.0847 %
GlobalStereo 30.0 % 30.6 % 27.6 % 27.3 %
GlobalStereo 1op 0 % 0 % 0 % 0.0411 %

Table 2. Unlabelled for the 14 SegPln proposals on Middlebury.

The only remaining difference is therefore the regular-
ization. In [15] this is computed as

Esmooth (D) =
∑
N∈N

W (N)min
(
|S (N) |, σs

)
. (35)

Here N is a collection of (horizontal and vertical) triples
{p, q, r} over which the regularization is computed, S (N)
is the approximation of second derivative

S(N) = D(p)− 2D(q) +D(r) (36)

and W (N) is a weight depending on a segmentation of the
image (see [15] for further details, all parameters are cho-
sen as in GlobalStereo). If N contains pixels from several
segments W (N) takes a low value, if all pixels are from the
same segment it takes a high value.

To achieve a similar regularization with our method we
change N to normal 4-connectivity. Now N consist of col-
lection of pairs {p, q} and the second derivative is penalized
using,

S(N) = Epq + Eqp. (37)

As a reference we also use the first order priors defined in
[15] which we call GlobalStereo 1op. In the fusion moves
we use ”improve” [11] after running RD to label all unla-
belled variables.

GlobalStereo uses three types of proposals. First we con-
sider the Segpln-proposals which are 14 piecewise planar
proposals generated from a segmentation (see [15]). In Fig-
ure 4 we started from the same randomized disparity func-
tion with tangents parallel to the image plane. We then
fused each SegPln proposal one at a time for both methods.
We kept track of how many variables where unlabeled after
RD for both methods and presented the numbers in Table 2
and the resulting disparity maps in Figure 4.

Note that the fusion move for our method is only sub-
modular if we fuse one planar function at a time. The Seg-
Pln proposals are piecewise planar and the regularization at
transitions between planes may not be submodular.

We also test our regularization on the full pipeline of
GlobalStereo which uses all three types of proposals (Seg-
pln, SameUni and Smooth). The results on all of the 2003
Middlebury Sequences [12] are given in Table 3 and the
running times are given in Table 4.



(a) Image (b) Our (c) GlobalStereo (d) GlobalStereo 1op

(e) Groundtruth (f) Our unlabelled (g) GlobalStereo unlabelled (h) GlobalStereo 1op unlabelled

Figure 4. The Teddy sequence from Middlebury [12]. (b-d) are estimated disparity maps after fusing the 14 SegPln proposals. In (f-h) we
present the unlabelled variables summed over all 14 proposals scaled 0–14. A white pixel would mean that fusing a proposal for this pixel
failed for every single proposal.

Tsukuba Venus Teddy Cones
Average

Non occ All Disc Non occ All Disc Non occ All Disc Non occ All Disc

Our 4.49 5.52 12.3 0.298 0.648 3.99 7.71 11.2 17.8 9.78 15.4 18.3 8.95
GlobalStereo 4.83 5.99 13.9 0.536 0.921 6.39 8.16 11.8 19.3 9.74 15.6 18.4 9.63

Table 3. Scores on Middlebury [12] using the same proposals, lower is better. All values are % of pixels being ≥ 1 pixel incorrect for each
of the three classes. The classes are non occluded regions, all pixels and regions near depth discontinuities.

Tsukuba Venus Teddy Cones Average

Our 21.3 25.5 29.4 36.5 28.2
GlobalStereo 106 139 143 181 142
GlobalStereo/Our 4.96 5.47 4.87 4.96 5.07

Table 4. Running time for the optimization in seconds using the
convergence criteria in GlobalStereo.

5.2. Regular Cameras

In this final section we compute depth maps for a cou-
ple of images that are not rectified, see Figures 5-6. Both
these images are part or real outdoor data sets, and as a pre-
processing step we have removed the background sky. In
both cases we use 9 neighboring images to compute cross
correlations. Here we used the data weight µ = 10 and the
threshold t = 1.

6. Conclusions
In this paper we advocated a largely overlooked ap-

proach to stereo with 2nd order smoothness regulariza-
tion. In contrast to popular approaches where triple
cliques are used for representing 2nd order surface deriva-
tives, we proposed to use pairwise interactions with 3D-
labels. We showed that this leads to simpler optimization
problems and in many cases (nearly) submodular fusion
moves.
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