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Abstract

We present a method for computing dense visual corre-
spondence based on general assumptions about scene ge-
ometry. Our algorithm does not rely on correlation, and
uses a variable region of support. We assume that images
consist of a number of connected sets of pixels with the
same disparity, which we call disparity components. Using
maximum likelihood arguments, at each pixel we compute
a small set of plausible disparities. A pixel is assigned a
disparity

�
based on connected components of pixels, where

each pixel in a component considers
�

to be plausible. Our
implementation chooses the largest plausible disparity com-
ponent; however, global contextual constraints can also be
applied. While the algorithm was originally designed for
visual correspondence, it can also be used for other early
vision problems such as image restoration. It runs in a few
seconds on traditional benchmark images with standard pa-
rameter settings, and gives quite promising results.

1 Introduction

Many problems in early vision are ill-posed, i.e. cannot
be uniquely solved without additional constraints. Scene
geometry can provide constraints that make these problems
well-posed [6]. In this paper we describe an approach to
early vision which exploits scene geometry in a novel man-
ner. We assume that images consist of a number of con-
nected sets of pixels with the same disparity, which we call
disparity components. Note that the boundaries of a dispar-
ity component are discontinuities, by definition. A disparity
component may be rectangular, or of any other shape.

Our method first computes for every pixel a small set
of plausible disparities, which are disparities more likely
to be the pixel’s true disparity than not given the observed
intensities. Then for each disparity we compute connected
components among those pixels for which that disparity is

plausible. Finally, for each pixel we select the plausible
disparity with the largest connected component.

In section 2 we describe our approach. In section 3 we
show empirical results from our method, on both real and
synthetic data. We conclude by discussing the relationship
between our work and previous methods, and proposing a
number of extensions.

2 Disparity component matching

Let � be a pixel, ������� its intensity in one image and�	�
����� its intensity in the other image. We will denote a
disparity by

�
, and the set of possible disparities by � .

In stereo, disparities are typically restricted to lie along a
scanline, while motion involves 2D disparities. We will
write the statement that pixel � has disparity

�
by ��� . If��� holds, then

�
��������� � ����� � ������������� � 1 �
where � is the measurement error, which includes such un-
modeled phenomena as analog noise and changes in viewing
angle and illumination. If � is a connected set of pixels, we
define

� � �������� � �! � 2 �
We will call ��� a disparity component hypothesis, or a com-
ponent hypothesis for brevity.

The number of component hypotheses is, of course, ex-
ponential. However, almost all hypotheses can be pruned by
a maximum likelihood argument. Define ��� to be plausible
if the likelihood of ��� is greater than the likelihood of "#���
for the observed data. A component hypothesis �$� is plau-
sible when �%� is plausible for all � in � . Section 2.3 gives
the precise definition of plausibility, along with a simple
algorithm for plausibility testing.



2.1 Our method

Our method has two steps. The first step only considers
a small number of disparities per pixel.1 The second step
chooses from among these disparities based on the compo-
nent hypotheses.

In the first step we find the plausible component hypothe-
ses �$� . For each fixed disparity

�
we first test all ��� ’s for

plausibility, as described in section 2.3. Then for each
�

we group pixels with plausible ��� ’s into connected com-
ponents, thus determining all plausible ��� ’s for the given�

.
In the second step of our method, for each pixel � we pick

a disparity from the plausible hypotheses � � containing � .
The simplest method is to rank the component hypotheses��� by decreasing size of � . Note that other sources of
information, including global contextual constraints, may
also be used for ranking (see section 5.2.) We thus assign� the disparity

�
such that ��� is the largest plausible ���

containing � .

2.2 Efficiency

If there are & pixels and ' disparities, the running time of
our method is ()�*&
'+� . We will show below that plausibility
testing can be done in ()�*&
',� time. In step 1 we perform(-�.',� connected component computations, which are ()�*&/�
time. Step 2 maximizes over ' quantities at each of & pixels.
In practice, our initial implementation takes a few seconds
per image to compute depth. For example, the tree image
shown in section 3.2.1 is 256 by 240, and took 3 seconds to
process (with 10 disparities, on a 50-MHz sparc).

2.3 Plausibility testing

Consider some fixed disparity ˆ� for pixel � . We need to
choose between the two hypotheses:

0
0 : � ˆ�0
1 : "#� ˆ� �

� ˆ� is plausible if
0

0 is more likely than
0

1. The statement
that the pixel � is occluded will be represented by ��1 .

Assume that the function 2/�4365
7 � � specifies the noise
model, that is the distribution of intensity of a pixel in the
first image given intensity 78� of the corresponding pixel in
the second image. For any event 9 we define Pr � ��9%�%�
Pr ��9:5 �;����� 1 �<�  = > �?�	�?����@A�B�C� Pr ��9D5 �	�.� , which is the proba-
bility of 9 conditioned on all the observed intensities from

1A somewhat similar model is used by Spoerri and Ullman [7] for
motion segmentation.

the image �	� . Similarly we define Pr � ��9:5 E%�#� Pr ��9D5 EC�?�;�F� .
Then

Pr � �G�������H5I� � ���J2#���
���%�H5K� � ���L� � ���  
We choose between

0
0 and

0
1 by comparing the like-

lihoods Pr � �.�
���%�=5 0 0 � and Pr � �.�
�����K5 0 1 � . Obviously, we
have

Pr � �.�
�����K5 0 0 �$�M2#�.�
���%�=5 � � ����� ˆ� �B�  
To compute Pr � �.�
�����K5 0 1 � we proceed as follows:

Pr � �.�
�����K5 0 1 �$� Pr ���*��������� 0 1 �
Pr � � 0 1 �

� N �POQ ˆ� Pr ���.�
�������R���=�S� Pr ���.�
���%�<�R�%1<�
Pr � � 0 1 �

� N �POQ ˆ� 2/�*�������=5 �;�����L� � �B� Pr �������K�
Pr � � 0 1 �

� Pr ���.�
���%�=5 ��1�� Pr ������1=�
Pr � � 0 1 �

To prefer
0

0 over
0

1 we should have

2/�*�������K5 � � ����� ˆ� �B�

T N �IOQ ˆ� 2/�*�������=5 �;�������
� �R� Pr �
�����K�

Pr � � 0 1 �
� Pr �
�.�
���%�=5 ��1B� Pr �
����1��

Pr � � 0 1 �  
Multiplying both sides by Pr �
� 0 1 � and then adding2/�*�������K5 �	������� ˆ� �R�#3 Pr �
� 0 0 � gives

2/�*�������K5 � � ����� ˆ� �R�
T U

�
2/�*�������K5 � � ����� � �R� Pr � ��� � �

� Pr � �.�
���%�=5 � 1 � Pr � ��� 1 �<�
where the summation is over all possible values of disparity�

.
Assuming that the probability of occlusion Pr ������1�� is

given by some constant V and that Pr �
�*�������K5 ��1R�,� 1W X#W
where 5 Y)5 is the number of all possible intensities, we have
the inequality

2/�*�������K5 � � ����� ˆ� �B�



T U
�

2#�.�
�����K5 � � ����� � �B� Pr � ��� � ��� V
5 Y)5  

We assume that the prior probabilities of all disparities are
equal. This implies that Pr � ���%�>� does not depend on

�
.

Consequently,

V4�Z5 �[5 Pr � ��� � �$� 1 \ � �
where 5 �+5 denotes the number of all possible disparities.
Finally, the comparison test can be equivalently rewritten as

2/�*�������=5 � � ����� ˆ� �B�
T 1 ]^V

5 �[5 3 U �
2/�*�������K5 � � ����� � �R��� V

5 Y)5 � � 3 �
so that we accept hypothesis

0
0 if the likelihood of disparity

ˆ� is larger than the weighted sum of the average likelihood
of all possible disparities and a cut off constant _W X�W .

We can use any noise model 2/�4365�7 � � in formula (3).
If 2 satisfies2 2#�a`�5b78���4�c2/��`d][78�.� and if ∆ ��� denotes�
���%��]^�	�
����� � � then test (3) is equivalent to

2#� ∆ � ˆ� � T 1 ]^V
5 �+5 3 U �

2/� ∆ � � �S� V
5 Y)5  � 4 �

This test is equivalent to

5∆ � ˆ� 5fehgi���%�
where g depends on the noise model 2 . This provides a
computationally trivial way to test plausibility. If the noise
model 2 and the parameters 5 Y)5 and V are specified in ad-
vance, then gi����� can be computed in ()�*',� time at each
pixel.

3 Experimental results

To run the algorithm on real images, we need to select a
noise model 2 , as well as a percentage of occlusion V . We
use Vj� 4% for all the experiments. For the noise model

we chose 2#�k7-5l78�C��mon�pPqsr.p�rutwv 22 x 2 . We experimented with
different values of y as shown below.

Theoretically, 2 corresponds to errors due to camera
noise. To handle other measurement errors, like errors due
to changes in illumination conditions and in viewing angle,
we introduce gain and bias parameters z and { that adjust
pixel intensities in the right image. Equation 1 becomes:

���������|�*z~}D� � ����� � �l��{K�S�������%�  � 5 �
To implement the new measurement error model, connected
components are computed for all disparities

�
in � , for all

2This holds if �	�����B�.�A� is uniform, Gaussian, or any other symmetric
distribution function centered at � � .

Figure 1. Random dot motion image illustrat-
ing aperture problem

values of z in � , and for all { in � , where � and � are some
fixed ranges. We also need to change formula (4) to take the
new variation parameters z and { into account. Similarly
to the derivation in section 2.3, we obtain the following
plausibility test:

2#� ∆ � ˆ�>� ˆ� � ˆ� � T
1 ]+V

5 �+5u5 �-5u5 ��5 3 U�>� � � �
2/� ∆ � �>� � � � ��� V

5 Y)5  � 6 �
Here ∆ ���>� � � � denotes �
���%��]Z�.z%3P�	�?���J� � ����{K� . Using
equation 6 instead of 4 slows our algorithm by approxi-
mately a factor of 10; however, we believe that this can be
significantly reduced.

Finally, for each pixel � we chose disparity
�

, gain z ,
and bias { corresponding to the largest connected component
containing � . This is a simple way to deal with z and {
parameters (see [1] for a different solution). For all real
images shown here, we vary z from 0.9 to 1.1 in intervals
of 0.1 and { from -14 to 14 in intervals of 1.

To produce a feasible disparity map, we check the out-
put for double assignments in the following way. If two
pixels in the left image are mapped to the same pixel in
the right image, then the pixel which belongs to a bigger
connected component gets assigned to that pixel in the right
image. This approach not only produces feasible disparity
assignments, but it also automatically handles occlusions.

On our disparity images the brighter colors correspond to
larger disparities, and the very brightest color to the pixels
for which no matches were found. The disparity images are
speckled with white pixels, indicating that for these pixels
no matches were found. But the majority of white points
is to the left of objects, since these points are occluded in
the right image. We also clean up isolated pixels by forcing
pixels that are surrounded by a single disparity to take on
their neighbor’s disparity.

3.1 Results on Synthetic Images

3.1.1 The aperture problem

Figure 1 shows the left image of a random dot motion se-
quence. In the right image, the entire image in translated



uniformly. Note the large textureless region in the center,
which creates problems for existing algorithms. Our method
performs correctly for this image, assigning all pixels the
correct translation. Our adaptive window scheme ensures
that the entire image is treated as a single window. This
effectively propagates information from the high-texture re-
gions at the outskirts of the image into the low-texture re-
gions in the middle of the image. Kanade and Okotumi’s
algorithm [5] may also succeed in this situation, as long as
the textureless region is rectangular.

3.2 Results on Real Images

The digital imagery shown below, including both
the original images and the results from various algo-
rithms, can be accessed from the web. The address is
http://www.cs.cornell.edu/home/rdz/adaptive.

3.2.1 The “Tree” Pair, y,� 1  7
Figure 2 shows the left image of the tree pair from SRI.
Figure 3 shows disparity maps obtained from normalized
correlation with window sizes 5 and 8. One can clearly see
the problems of correlation using a fixed window: with a
small window there are many wrong matches, while large
windows perform poorly at the disparity discontinuities.

Figure 4 shows the disparity map obtained by our algo-
rithm. The edges of the tree trunk, branches, and stump are
significantly sharp and they correspond closely to the actual
tree shapes. Many of the finer details of the scene are also
found accurately. For example, consider the leaves at the
top of the closest tree.

3.2.2 The “Meter” Pair, y,� 0  8
Figure 5 shows the left image of the meter pair from CMU.
Figures 6 and 7 show the results of normalized correlation
and our algorithm. On the wall of the building there are
many areas with low intensity variation. Normalized corre-
lation clearly has trouble producing correct answers in these
areas. Even if we use a large window of 20 } 20 pixels,
there are still a lot of large bright spots on the wall, which
are obviously not matched correctly.

Results produced by our algorithm are by far more co-
herent, and most of the edges are very accurate. Especially
interesting is the long thin pole located between the last 2
meters of the picture. It’s clear that a rectangular window
algorithm has slim chances of assigning the right disparity
to this pole, unless the window width is not much bigger
than the width of the pole.

4 Related work

The fundamental distinction between our method and
previous work lies in the manner in which we exploit scene
geometry. Most methods for computing visual correspon-
dence make assumptions about the underlying scene. For
example, one popular method for computing motion [3] as-
sumes that the underlying motion varies smoothly (in fact, a
large number of methods based on regularization make such
an assumption [6]). These methods tend to produce poor
results near discontinuities. In the last decade, a number
of methods have been developed that also handle discon-
tinuities. Markov Random Fields [2], for example, ex-
plicitly model discontinuities using methods from statistical
physics. Our method is comparable to MRF’s, in that we
avoid crossing discontinuities. MRF’s, however, require
exponential running time, while our method is linear in the
number of pixels and disparities. MRF’s also fundamentally
handle spatially local interactions, while our method is best
suited for global constraints. For example, our method can
exploit global contextual constraints that do not fit naturally
into an MRF framework.

Most correspondence methods compare rectangular win-
dows, which implicitly assumes that images consist of
fronto-parallel planes undergoing translational motion. A
recent paper by Stewart et al. [8] justifies this assumption
under very general assumptions concerning scene geom-
etry. Several researchers have designed adaptive methods
that iteratively compute disparity, attempting to avoid cross-
ing discontinuities. Jones and Malik [4] use linear spatial
filters, and compute the largest scale that does not strad-
dle a discontinuity. Kanade and Okotumi [5] model local
disparity variation, in order to handle sloped surfaces and
discontinuities. Their method grows the window locally us-
ing a greedy method that minimizes the uncertainty of their
estimate. Once the correct window size is found at each
point, correspondence is computed using SSD correlation.

Our method is like existing adaptive techniques [4, 5] in
that we choose a different window at each pixel. Previous
methods effectively search for the best rectangular window
at each point, over some limited range. In contrast, our
method efficiently handles windows of arbitrary shape and
size, without performing significant search. A more fun-
damental distinction is that the previous adaptive window
methods are based on correlation, while our approach is not.

5 Extensions

We are primarily interested in two extensions to our basic
method. The first involves generalizing our work to han-
dle other problems in early vision besides correspondence,
such as image restoration. The second is to choose more in-
telligently among the plausible component hypotheses, for



example by incorporating global contextual constraints.

5.1 A variable neighborhood approach to early
vision

While our method was originally designed for computing
correspondence, it is applicable to a range of early vision
problems. Many of these problems involve reconstructing a
piecewise constant function from noisy data. Existing meth-
ods make widespread use of rectangular windows of fixed
size, primarily for efficiency. However, fixed rectangular
windows poorly model the boundaries of real world objects.
Our work provides a new approach to these problems.

For example, consider the problem of image restoration,
in which the intensities of a piecewise constant image are
corrupted by noise, and the goal is to reconstruct the original
image. We approach this problem by considering hypothe-
ses of the form ��� , which states that the pixel � has the
intensity 7 in the original (uncorrupted) image. A hypoth-
esis ��� is plausible if 7 is more likely to be the original
intensity of � than not for our observed data. Plausibility
testing for this problem is very similar to section 2.3, and
the absence of occlusions simplifies the equations. We then
compute the plausible components �#� by forming connected
components from the pixels � with plausible hypotheses ��� .
Finally, we assign each pixel � the intensity 7 such that ���
is the largest plausible ��� containing � .

5.2 Ranking the plausible hypotheses

In the second step of our method we choose among the
plausible component hypotheses. Our work to date has used
a simple, local criterion: every pixel chooses the largest
plausible component hypothesis containing it. However, it
is possible to make this choice in a more interesting man-
ner. Suppose, for example, that a pixel participates in two
component hypothesis � and �#� (we omit disparity super-
scripts for legibility). � might be smaller than ��� , yet still
be a better hypothesis. For example, ��� could be highly
irregular in shape and riddled with holes, while � could be
a compact, simple region. It is straightforward to extend
our basic method to rank component hypotheses based on
criterion other than size.

We are particularly interested in the use of global con-
textual constraints to rank component hypotheses. In a par-
ticular task, some hypotheses may be more reasonable than
others. For example, suppose the camera is pointed at a
ground plane, as in figure 2. The components at the bottom
of such images tend to be horizontally elongated.

Another extension would also consider the measurement
errors that result from a given � . If all the pixels in � have
disparity

�
, then the measurement errors is �������	]�� � ���:� � �

for each � in � . Note that due to the way we construct �

there will be no pixel � with a measurement error greater
than gi����� (otherwise, ��� is not plausible, and � would not
be included in � ). We can, for example, require that the
measurement errors from � be unbiased. Other methods for
evaluating the measurement errors could also be used, such
as minimizing the squared error.

A final extension concerns the manner in which we as-
sign disparities to pixels, once we have ranked the plausible
component hypotheses. Our current method is greedy, and
purely local. As a consequence, it is possible that � selects
disparity

�
based on the component � , but that the other

pixels in � select some different disparity. We are designing
other methods which enforce a kind of consistency in the
selection process.
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Figure 2. Left tree image.

Figure 3. Disparity maps from normalized cor-
relation, 5 } 5 and 8 } 8 windows.

Figure 4. Disparity map from our algorithm.

Figure 5. Left meter image.

Figure 6. Disparity maps from normalized cor-
relation, 9 } 9 and 20 } 20 windows.

Figure 7. Disparity map from our algorithm.


