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Abstract

We introduce an approach to feature-based object
recognition, using maximum a posteriori (MAP) es-
timation under a Markov random field (MRF) model.
This approach provides an efficient solution for a wide
class of priors that explicitly model dependencies be-
tween individual features of an object. These priors
capture phenomena such as the fact that unmatched
features due to partial occlusion are generally spatially
correlated rather than independent. The main focus of
this paper is a special case of the framework that yields
a particularly efficient approximation method. We call
this special case spatially coherent matching (SCM),
as it reflects the spatial correlation among neighbor-
ing features of an object. The SCM method operates
directly on the image feature map, rather than rely-
ing on the graph-based methods used in the general
framework. We present some Monte Carlo experi-
ments showing that SCM yields substantial improve-
ments over Hausdorff matching for cluttered scenes
and partially occluded objects.

1 Introduction

In this paper we present a Bayesian approach to ob-
ject recognition using Markov random fields (MRF’s).
As with many approaches to recognition we assume
that an object is modeled as a set of features. The
recognition task is then to determine whether there
is a match between some subset of these object fea-
tures and features extracted from an observed image.
We consider the case in which the features and the ob-
ject models are in a two-dimensional coordinate frame,
although the framework is not limited to this case.
The central idea underlying our approach is to explic-
itly capture dependencies between individual features
of the object model. Markov random fields provide
a good theoretical framework for representing depen-
dencies between features. Moreover, recent develop-
ments in graph-based algorithms (e.g., [1], [4]) make

it quite practical to compute the exact maximum a
posteriori (MAP) estimate for the MRF model that
we employ.

Our approach contrasts with most feature-based
object recognition techniques, as they do not explic-
itly account for dependencies between features of the
object. It is desirable to be able to account for such
dependencies, because they are common in real imag-
ing situations. For example, when an object is par-
tially occluded, features that are near one another in
the image are likely to be occluded together. In our
model, we assume that the process of matching indi-
vidual object features is described a priori by a Gibbs
distribution associated with a certain Markov random
field. This model captures pairwise dependencies be-
tween features of the object. We then use maximum
a posteriori (MAP) estimation to find the match be-
tween the object and the scene or to show that there
is no such match.

While a number of probabilistic approaches to
recognition have been reported in the literature (e.g.,
[9],[8],[10]) these methods do not provide an explicit
model of dependence between features. The work of
[3] is one of the few to specifically address the issue
of dependence between features, however it develops
a somewhat ad hoc probability function for the pres-
ence of an object at a location given a set of matching
features. Two of the central contributions of our work
are that (1) we use a principled approach based on
MAP estimation, and (2) we do not assume that the
features of the model are directly observable in the
image (this is analogous to the difference between a
Markov model and a Hidden Markov Model).

In the next section we develop the general frame-
work. We do not discuss the details of the exact graph
based solution methods. While such methods are quite
practical, they are still significantly slower than the
approximation methods that we consider here. In
Section 3 we present the spatially coherent matching



Proceedings of IEEE conference on “Computer Vision and Pattern Recognition” (CVPR), 1999 vol. II, p.518

(SCM) technique as a special case of our general for-
mulation. In that section we also show that finding
the best match using the Hausdorff fraction [6] is a
special case of SCM when the features in the object
model are independent. Thus our Bayesian framework
also provides a probabilistic understanding of Haus-
dorff matching. With this view, it becomes apparent
that one of the main limitations of the Hausdorff ap-
proach is its failure to take into account the spatial
coherence of matches between neighboring features.
The SCM approach addresses exactly this limitation.
In Section 4 we present some Monte Carlo experiments
illustrating a substantial improvement of the SCM ap-
proach over Hausdorff matching, when the images are
cluttered with many irrelevant features and have sub-
stantial occlusion of the object to be recognized.

2 The MAP-MRF Framework
In this section we describe our object matching

framework in more detail. We represent an object
by a set of features, indexed by integers in the set
M = {1, 2, . . . , m}. Each feature corresponds to some
vector Mi in a feature space of the model. Commonly
the vectors Mi will simply specify a feature location
(x, y) in a fixed coordinate system of the model, al-
though more complex feature spaces fit within the
framework.

A given image I is a set of observed features from
some underlying true scene. Each feature i ∈ I corre-
sponds to a vector Ii in a feature space of the image.
The true scene can be thought of as some unknown set
of features IT in the same feature space. Similarly, IT

i

is a vector describing the feature i ∈ IT in the fea-
ture space of the image. We are interested in finding
a match between the model M and the true scene IT ,
using the observed features I.

A match of the model M to the true scene IT is
described by a pair {S, L} where S = {S1, S2, . . . , Sm}
is a boolean configuration vector and L is a location
parameter specifying the positioning of the object in
the scene. We define an operation ⊕ that for a given
object location L maps a model feature Mi to a feature
L⊕Mi in the true scene. If Si = 1 then the ith feature
of the model has a matching feature j ∈ IT such that
IT
j = L ⊕ Mi and if Si = 0 then it does not.

Note that the operation ⊕ depends on the type of
mapping from the model to the image feature space,
which varies for the particular recognition task. In
this paper we will use translation (vector summation).
Other transformations are possible, for example, when
L contains additional information about scale or an-
gular orientation of the model. In such cases ⊕ may
be defined as a certain affine transformation of Mi for

a given L.

To determine the values of {S, L} we use the max-
imum a posteriori (MAP) estimate

{S∗, L∗} = argmax
S,L

Pr(S, L|I).

Bayes rule then implies

{S∗, L∗} = arg max
S,L

Pr(I|S, L) Pr(S) Pr(L) (1)

assuming that S and L are a priori independent. The
prior distributions Pr(S) and Pr(L) are discussed in
section 2.1. We assume that the prior distribution
of configuration S is described by a certain Markov
random field, thus allowing for spatial dependencies
among the Si. The likelihood function Pr(I|S, L) is
discussed in section 2.2.

Let L denote a set of possible locations of the model
in the true scene. Then the range of the location pa-
rameter L is L∪∅ where the extra value ∅ implies that
the model is not in the scene. The basic idea of our
recognition framework is to report a match between
the model and the observed scene if and only if

S∗ 6= 0̄ and L∗ 6= ∅. (2)

In section 2.3 we develop the test in (2) for the model
specified in 2.1 and 2.2.

2.1 Prior Knowledge

We assume that the prior distribution of the loca-
tion parameter L can be described as

Pr(L) = (1 − ρ) · f(L) + ρ · δ(L = ∅) (3)

where f(L) = Pr(L|L ∈ L), the parameter ρ is the
prior probability that the model is not present in the
scene, and δ(·) equals 1 or 0 depending on whether
condition “·” is true or false. Generally the distribu-
tion function f(L) is uniform over L. However in some
applications f(L) can reflect additional information
about the model’s location. For example, such infor-
mation might be available in object tracking since the
current location of the model can be estimated from
previous iterations. The value of the constant ρ may
be anywhere in the range [0, 1). In section 2.3 we will
see that ρ appears in our recognition technique only
as a threshold for deciding whether or not the model
is present given the image.

We assume that the collection of boolean variables,
S, indicating the presence or absence of each feature,
forms a Markov random field independent of L. More
specifically, the prior distribution of S is described by
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the Gibbs (cf. [7]) distribution,

Pr{S} ∝ exp

{

−
∑

i∈M

αi · (1 − Si)

−
∑

{i,j}

β{i,j} · δ(Si 6= Sj)







(4)

where the second summation is over all distinct un-
ordered pairs of model features.

The motivation for this model is that Pr(S) cap-
tures the probability that features will not be matched
even though they are present in the true scene, given
some fixed location, L. Such non-matches could be
due to occlusion, feature extraction error, or other
causes. The parameter αi ≥ 0 is a penalty for such
non-matching features. The coefficient β{i,j} ≥ 0
specifies a strength of interaction between model fea-
tures i and j. For tractability, we consider only pair-
wise interaction between features. Nevertheless, the
pairwise interaction model provided by this form of
Gibbs distribution is rich enough to capture one im-
portant intuitive property: a priori it is less likely that
a feature will be un-matched if other features of the
model have a match. Note that if all β{i,j} = 0 then
the features do not interact and the Si’s become inde-
pendent Bernoulli variables with probability of success
Pr(Si = 1) = eαi/(1 + eαi) ≥ 0.5.

2.2 Likelihood Function
The features of the observed image I may appear

differently from the features of the unknown true scene
IT due to a number of factors. This includes sen-
sor noise, errors of feature extraction algorithms (e.g.
edge detection), and others. It is the purpose of
the likelihood function to describe these differences in
probabilistic terms.

We assume that the likelihood function is given by

Pr(I|S, L) ∝
∏

i∈M

gi(I|Si, L) (5)

where gi(·) is a likelihood function corresponding to
the ith feature of the model. If Si = 0 or L = ∅ then
gi(I|Si, L) is the likelihood of I given that the true
scene does not contain the ith feature of the model.
We assume that all cases of mismatching feature have
the same likelihood. That is, for any i ∈ M and L ∈ L

gi(I|1, ∅) = gi(I|0, ∅) = gi(I|0, L) = C0 (6)

where C0 is a positive constant.
If L ∈ L then gi(I|1, L) is the likelihood of observ-

ing image I given that the i-th feature of the model

is at location (L ⊕ Mi) in the feature space of the
true scene IT . The choice of gi(I|1, L) for L ∈ L will
depend on the particular application.

Example 1. (Recognition based on edges)
Consider an edge-based object matching problem,
where all features of the model are edge pixels. We
observe a set of image features I obtained by an inten-
sity edge detection algorithm. One reasonable choice
of gi(I|1, L) for L ∈ L is

gi(I|1, L) = C1 · g(dI(L ⊕ Mi)) (7)

where dI(·) is a distance transform of the image fea-
tures I. That is, the value of dI(p) is the distance
from p to the nearest feature in I. The function g(·)
is some probability distribution that is a function of
the distance to the nearest feature. Normally, g is a
distribution concentrated around zero. The underly-
ing intuition is that if the true scene IT has an edge
feature located at (L ⊕ Mi) then the observed image
I should contain an edge nearby. Thus the distance
transform dI(L ⊕ Mi) will be small with large proba-
bility. A number of existing feature based recognition
schemes use functions of this form, including Haus-
dorff matching [6].

2.3 MAP Estimation
By substituting (3), (4), (5) into (1) and then tak-

ing the negative logarithm of the obtained equation
we can show that MAP estimates {S∗, L∗} minimize
the value of the posterior energy function

E(S, L) =

{

HL(S) − ln f(L) − ln(1 − ρ) if L ∈ L

HL(S) − ln ρ if L = ∅

where

HL(S) =
∑

{i,j}

β{i,j} · δ(Si 6= Sj) (8)

+
∑

i∈M

(αi · (1 − Si) − ln gi(I|Si, L)) .

Our goal is to find {S∗, L∗}. The main techni-
cal difficulty is to determine {Ŝ, L̂} that minimize
HL(S) − ln f(L) for L ∈ L. In general this can be
done using graph cut techniques developed in [1] and
[4]. More details on graph methods for the general case
can be found in [2]. In the remainder of this paper we
consider some special cases where no sophisticated op-
timization scheme is needed. For the moment assume
that {Ŝ, L̂} are given.

Consider HL(S) for L = ∅. Equation (6) implies
that H∅(S) is minimized by the configuration S = 1̄
where all Si = 1. If E(Ŝ, L̂) > E(1̄, ∅) then {S∗, L∗} =
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{1̄, ∅}. According to (2), in this case we report that
the model is not recognized in the scene. If E(Ŝ, L̂) ≤
E(1̄, ∅) then {S∗, L∗} = {Ŝ, L̂}. In this case L∗ ∈ L.
Nevertheless, if Ŝ = 0̄ we would still report the absence
of the model in the scene.

Finally, our recognition framework can be summa-
rized as follows. The match between the model and
the observed scene is reported if and only if Ŝ 6= 0̄ and

H
L̂
(Ŝ) − ln f(L̂) ≤ m · ln

1

C0

+ ln
1 − ρ

ρ
(9)

where (9) is derived from the inequality E(Ŝ, L̂) ≤
E(1̄, ∅). The right hand side in (9) is a constant that
represents a certain decision threshold. Note that this
decision threshold depends on two things: first, the
prior probability of occlusion, ρ; and second, the prod-
uct of the number of model features, m, with the log-
likelihood of a mismatch, C0.

3 Spatially Coherent Matching
In this section we consider models where certain

pairs of features can be viewed as local neighbors. We
introduce a simple matching technique that captures
dependencies between features in a local neighbor-
hood. We call this method spatially coherent matching
(SCM) because it takes into account the fact that fea-
ture mismatches generally occur in coherent groups
(e.g., due to partial occlusion of an object). SCM is
both a special case of our general framework, as shown
in Section 3.2, and is a natural generalization of Haus-
dorff matching, as shown in Section 3.3.

3.1 SCM Algorithm
Both Hausdorff matching and SCM consider model

features that are within some distance r of the nearest
image feature. Let ML = {i ∈ M : dI(L ⊕ Mi) ≤ r}
denote the subset of model features lying within dis-
tance r of image features, when the model is posi-
tioned at L. We think of ML as a set of match-
able model features for a given location L. In addi-
tion, we define a subset of unmatchable model features
UL = {i ∈ M | dI(L⊕Mi) > r} that also corresponds
to a fixed location L. The set UL consists of model fea-
tures that are greater than distance r from any image
features. Note that UL = M − ML.

The main idea of the SCM scheme is to require that
matching features should form large connected groups.
There should be no isolated matches. Let BL ⊂ ML

denote the subset of features in ML that are “near”
features of UL. That is, BL = {i ∈ ML | uL(i) ≤ R},
where R is a fixed integer parameter and uL(i) is a
distance from i to the set UL. We will refer to BL as
a boundary of the set of matchable features ML. In

Figure 1: The features of ML (for some fixed L) are
highlighted by shading. The unmatchable features UL

are white. The boundary features BL for R = 2 are
shown in gray. The non-boundary features, that is the
elements of the set ML − BL, are black.

the example of Figure 1 the boundary features BL are
shown in gray color.

The locally coherent matching technique works as
follows. The main task is to find

Lscm = argmax
L∈L

(

|ML| − |BL| +
ln f(L)

λ

)

where λ ≥ 0 is some constant. Note that |ML| − |BL|
is the number of non-boundary features in ML. Thus,
SCM seeks a location in the image where matchable
features form large coherent groups. As illustrated in
Figure 1, isolated matches are disregarded since they
lie completely inside the boundary. The prior distribu-
tion f(L) is also taken into consideration. The SCM
technique matches the model to the image at the lo-
cation Lscm if

|MLscm
| − |BLscm

| +
ln f(Lscm)

λ
> K (10)

where K is a decision threshold. Efficient implemen-
tation of SCM algorithm is discussed in Section 4.1.

3.2 Derivation of SCM
The SCM technique can be derived analytically

from the results of Section 2. In fact, SCM is an
optimal solution for a certain class of models where
features interact only in a local neighborhood. In this
section we discuss the corresponding special case of
our general framework. The method of section 2 re-
quires minimization of the function HL(S) − ln f(L)
where f(L) is a prior distribution of possible locations
and HL(S) is defined in (8). The following assump-
tions specify our particular choice of HL(S).

We assume that the penalty for non-matching fea-
tures αi = α is a constant. Let NM denote a set of all
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pairs of neighboring features for a given object M . We
assume that β{i,j} = β if the features {i, j} ∈ NM are
neighbors and β{i,j} = 0 if the features {i, j} 6∈ NM

are not neighbors. The nonnegative constant β de-
scribes dependency between the neighboring features.
Intuitively, it is reasonable to expect that neighboring
features of the model are more likely to interact than
a pair of features isolated from each other.

As in Example 1 we assume that gi(I|1, L) = C1 ·
g(dI(L ⊕ Mi)), and moreover we use the particular
function,

g(d) =

{

1

r
if d ≤ r

0 if d > r

where r is the distance to the nearest model fea-
ture used in the definition of matchable features ML.
In fact, this likelihood function prohibits assigning
matches to features not in ML.

Now all terms in (8) are specified. The next step is
to minimize HL(S) for a fixed location L. Theorem 1
provides the necessary technical result. It works un-
der the assumptions stated above. In addition, we
consider λ = α + ln C1

rC0

.

Theorem 1 Assume that the neighborhood system
NM forms a chain and that uL(i) is a distance along
this chain. If β = R · λ then

min
S

HL(S) = m · (α − lnC0) − λ · (|ML| − |BL|)

and the optimal S 6= 0̄ iff |ML| > |BL|.

More details and the proof of this theorem can be
found in [2]. Recall that our final goal is to minimize
HL(S)−ln f(L) for L ∈ L. As follows from Theorem 1,
the optimum is achieved at the location

L̂ = argmin
L∈L

(

−λ · (|ML| − |BL|) − ln f(L)
)

.

Obviously, L̂ = Lscm. The corresponding optimal
value H

L̂
(Ŝ) − ln f(L̂) equals

m · (α− lnC0)− λ · (|MLscm
| − |BLscm

|)− ln f(Lscm).

Substituting this into (9) gives (10) with

K =
1

λ
·

(

mα − ln
1 − ρ

ρ

)

.

3.3 Relation to Hausdorff Matching
The classical Hausdorff distance is a max-min mea-

sure for comparing two sets for which there is some
underlying distance function on pairs of elements, one

from each set. The application of Hausdorff match-
ing in computer vision has used a generalization of
this classical measure [6], based on computing a quan-
tile rather than maximum of distances. One form of
this measure counts the number of matchable features,
|ML|, when the model is positioned at L. The model
is matched at the location Lh = argmaxL∈L |ML| if
and only if the number of matched features, |MLh

|, is
larger than some critical fraction of the total number
of model features, m.

SCM reduces to Hausdorff matching if R = 0 and
f(L) = const. In fact, R = 0 implies that the bound-
ary BL of the set of matchable features is always
empty. Then

Lscm = arg max
L∈L

(

|ML| − 0 +
const

λ

)

= Lh

and the test in (10) reduces to |MLh
| ≥ K ′ which is

exactly the Hausdorff test described above. As fol-
lows from Theorem 1, R = 0 corresponds to β = 0.
Therefore, Hausdorff matching is a special case of our
general framework when the features are independent.

The SCM technique generalizes Hausdorff matching
in an interesting way. Note that the size of the bound-
ary |BL| is small if the features in ML are grouped in
large connected blobs and |BL| is large if the match-
able features are isolated from each other. Therefore,
SCM is reluctant to match if the features in ML are
scattered in small groups even if the size of ML is large.
In contrast, Hausdorff matching cares only about the
size of ML and ignores connectedness. The SCM tech-
nique also naturally incorporates prior knowledge of
location represented by the distribution f(L).

4 Experimental Results
In order to evaluate the recognition measures de-

veloped in this paper, we have run a series of ex-
periments using Monte Carlo techniques to estimate
Receiver Operating Characteristic (ROC) curves for
each measure. A ROC curve plots the probability of
detection along the y-axis and the probability of false
alarm along the x-axis. Thus, the ideal recognition
algorithms would produce results near the top left of
the graph (low false alarm and high detection proba-
bilities).

We use the experimental procedure reported in
[5], where it was shown that Hausdorff matching
works better than a number of previous binary image
matching methods including correlation and Chamfer
matching. For that reason we are mainly interested in
comparing the algorithms developed here with Haus-
dorff matching, because it has already been shown to
have better performance than these other techniques.
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a) An object b) A simulated image

Figure 2: The simulated image in (b) contains 5% of
clutter. The perturbed and partly occluded (40% oc-
clusion) instance of the object is located in the center.

Thus we contrast Hausdorff matching with the SCM
technique. In Section 4.1 we explain some extra de-
tails about implementing SCM technique. In 4.2 we
discuss the Monte Carlo technique used to estimate
the ROC curves and present the results.

4.1 Implementation of SCM

In this section we provide some details of our im-
plementation of the SCM technique from Section 3.1.
The SCM technique is simple to implement using im-
age morphology. Given the set of model features, M ,
and location, L, the set of matchable features ML are
those within distance r of image features. This can
be computed by dilating the set of image features I
by radius r (replacing each feature point with a disc
of radius r). Now the set ML is simply the intersec-
tion of M with this dilated image. The next step is
to compute the boundary BL which is the subset of
features in ML that are within distance R of some
feature in UL, the set of unmatchable features. Recall
that UL = M−ML. Again, we can find features in one
set near the features in some other set using dilation.
Dilating the set UL by R, and taking the intersection
with ML yields BL, the points of ML within distance
R of points in UL.

The quality of the match produced by the SCM
technique at each location L is determined by the
number of non-boundary matchable features, that is,
by |ML| − |BL|. The search for the best match over
all values of L ∈ L can be accelerated using the same
kinds of pruning techniques that were developed for
the Hausdorff measure. Note that if the Hausdorff
measure gives no match at L then the spatially co-
herent matching technique can not match at L either.
Indeed, |ML| < K implies that the test in (10) is nec-
essarily false.

clut=3% occl=20% clut=5% occl=20%

clut=3% occl=40% clut=5% occl=40%

Figure 3: ROC curves.

4.2 ROC Curves

We have estimated ROC curves by performing
matching in synthetic images and using the matches
found in these images to estimate the curve over a
range of possible parameter settings. 1000 test images
were used in the experiments, and were generated ac-
cording to the following procedure. Random chains of
edge pixels with a uniform distribution of lengths be-
tween 20 and 60 pixels were generated in a 150 × 150
image until a predetermined fraction of the image was
covered with such chains. Curved chains were gener-
ated by changing the orientation of the chain at each
pixel by a value selected from a uniform distribution
between −π

8
and +π

8
. An instance of the object was

then placed in the image, after rotating, scaling, and
translating the object by random values. The scale
change was limited to ±10% and the rotation change
was limited to ± π

18
. Occlusion was simulated by eras-

ing a fixed number of the model image pixels. We
erase one (with probability 0.6), two (0.3), or three
(0.1) connected chains of pixels in randomly chosen
parts of the model. Gaussian noise was added to the
locations of the model image pixels (σ = 0.25). The
pixel coordinates were finally rounded to the closest
integer. This procedure was also used in [5].

For the experiments reported here, we performed
recognition using the 56 × 34 object shown in Fig-
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ure 2(a). This object contains 126 edge features. An
example of a synthetic image generated using this ob-
ject and the procedure described above is shown in
Figure 2(b). In each trial, a given matching measure
with a given parameter value was used to find all the
matches of the object to the image. A trial was said
to find the correct object if the position (considering
only translation) of one of the matches was within
three pixels of the correct location of the object in
the image. A trial was said to find a false positive if
any match was found outside of this range (and that
match was not contiguous with a correct match posi-
tion). Thus note that the test images were formed by
slight rotation and scaling of the object model, but the
searched was only done under translation. Any non-
translational change to the object was not modeled by
the matching process.

Figure 3 shows the ROC curves corresponding to
experiments with different levels of occlusion and im-
age clutter. For these tests we assumed that all lo-
cations in the image are a priori equally likely, that
is, f(L) = const. The curves correspond to the SCM
technique for various values of R ∈ [0, 25]. As R gets
larger, up to 20 or 21, the results improve, so the
curves closer to the top left are for larger values of
R. For even larger values of R, which we do not show,
the ROC curves rapidly deteriorate. It is interesting
to note that given this particular object, a distance
of R = 25 corresponds approximately to the height of
the object. Thus the performance does not deteriorate
until the coherence region begins connecting together
disconnected pieces of the object.

The case of R = 0 corresponds to Hausdorff match-
ing. In all examples in Figure 3 this case had the worst
matching performance. Thus the spatial coherence ap-
proach plays a large role in improving the quality of
the match. Note that in [5], using the same Monte
Carlo framework, it was shown that Hausdorff match-
ing works better than a number of other methods
including binary correlation and Chamfer matching.
Thus these results indicate that SCM is a substan-
tial improvement over several commonly used binary
image matching techniques.

It should be noted that the value of R does not
make a big difference for lower clutter or occlusion
cases (top row of the figure), but makes a very large
difference when these are larger (bottom row of the
figure). Thus we see that for “easy” recognition prob-
lems, the spatial coherence of the matches is less
important (though still offers a slight improvement).
However as the object becomes more occluded and as
there are more distractors, it becomes quite impor-

tant to consider the spatial coherence of the matches.
It should also be noted that in real imaging situations
there would likely be small gaps in the instance of an
object for which it would be undesirable that the SCM
technique penalize such gaps. Recall that the parame-
ter r can be used to cause features of the object model
to match across small gaps in the image. Any larger
gaps would then be subject to penalty based on the
value of R.
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