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Abstract. It is well known that multi-surface segmentation can be cast
as a multi-labeling problem. Different segments may belong to the same
semantic object which may impose various inter-segment constraints [1].
In medical applications, there are a lot of scenarios where upper bounds
on the Hausdorff distances between subsequent surfaces are known. We
show that incorporating these priors into multi-surface segmentation is
potentially NP-hard. To cope with this problem we develop a submodular-
supermodular procedure that converges to a locally optimal solution
well-approximating the problem. While we cannot guarantee global op-
timality, only feasible solutions are considered during the optimization
process. Empirically, we get useful solutions for many challenging medi-
cal applications including MRI and ultrasound images.

1 Introduction

This paper addresses the problem of joint segmentation of multiple interacting
surfaces. Inter-dependence between segmentation boundaries is relevant when
extracting complex multi-part objects, e.g. organs in biomedical imaging. This
problem can be cast as a multi-labeling problem [2, 1]. While Potts model [3]
would be the most straightforward approach, the intensity appearance models
for each label/segment are not discriminative enough and additional geometric
constraints for the labels/segments are necessary. Geometric constraints in a
form of different shape priors [4–7] are widely used in binary segmentation, but
their applicability or usefulness for multi-surface segmentation is limited.

Li et al. [2] proposed a nested surface approach that models geometric in-
teraction by defining distance constraints on subsequent surfaces Sℓ. In their
approach, every surface is represented in polar coordinates with respect to a
center point (cf. Fig. 1, left) or a center line in 3D. Therefore, they can only rep-
resent star shaped segmentations (cf. Fig. 1, middle). While this limitation does
not have a strong affect on segmentations for near-circular objects like the left
ventricle of a heart, it becomes problematic for complex objects like the brain.
Another problem of using the polar coordinates is the need to re-sample and
transform the image data usually given in Cartesian coordinates. As a result,
energy and optimization in [2] is sensitive to the pre-selected center point/line.

The topological restrictions in [2] were addressed by Delong and Boykov [1].
They can incorporate the minimal distance constraint between the surfaces with-
out relying on a center point/line. They keep the original Cartesian (grid-based)
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Fig. 1. Left: Li et al. [2] can segment star shaped shapes. Middle: Shapes that are not
star-shaped cannot be represented. Right: Delong and Boykov [1] are not limited in
their segmentation, but they cannot enforce the Hausdorff distance (cf. Figure 2).

representation of the image (cf. Fig. 1, right) and enforce a tube of a certain dis-
tance around the enclosed surface (cf. Fig. 2, middle). We refer to this constraint
as tubular distance constraint. A constraint on the maximal distance independent
of the center point/line leads to the Hausdorff distance constraint (cf. Fig. 2,
right). [1] were unable to incorporate this Hausdorff distance prior into their
global optimization framework.

The Hausdorff distance prior is fundamentally different from the tubular

distance prior. It constitutes a potentially NP-hard optimization problem be-
cause the involved energy is a combination of submodular and supermodular
terms. We will show that this problem can be approximated efficiently using
the submodular-supermodular procedure [8]. This technique was inspired by the
concave-convex procedure for continuous functions [9]. Our algorithm changes
the underlying graph in a way different from earlier submodular-supermodular
techniques [10, 11]. For example, besides changing the edge capacities, we also
replace certain edges modifying the graph’s connectivity. This operation main-
tains the value of the previous solution, but the corresponding cut is no longer
the global minimum and it can be recomputed. Our connectivity modifications
are based on the signed distance maps of the current segmentation, which can
be efficiently computed in linear time [12, 13]. Typically, our method converges
within 5-10 iterations.

This paper is organized as follows. We will present the overall energy function
in Section 2 and in Section 3 we will show how to enforce the Hausdorff distance
prior. In Section 4, we will present some medical examples. In Section 5 we will
provide a conclusion of this work and discuss future work.

S1S2
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H

Fig. 2. Left: Without any distance constraint, an arbitrary multilabel segmentation
is possible which implicitly defines separating surfaces Sℓ. Middle: Incorporating a
tubular distance t between subsequent labels is polynomial. Right: Incorporating an
upper bound H on the Hausdorff distance makes the problem potentially NP-hard.
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1 1 0 0
2 1 1 0
3 1 1 1

Fig. 3. Label Representation: Labels between 0 and k (here: k = 3) can be repre-
sented by k binary variables [15]. All these binary variables fulfill the logical conditions
xℓ ⇒ xℓ−1 (left table). This relationship is illustrated in the four images for u(x) (left
image) and x0, x1 and x2 (from middle to right).

2 Multi-Surface Segmentation

In the following, we want to address the problem of multi-surface segmentation
in the context of medical imaging. We therefore assume that a volumetric image
data3 I : Ω → R is given that assigns to every point x of the image domain
Ω ⊂ R

3 a color value I(x) ∈ R. The goal is now to find a labeling u : Ω → L
that assigns to every point a label of the finite label space L = {0, . . . , k} in a
way that the following energy function is minimized

E(u) =

k∑

ℓ=0

∫

u−1(ℓ)

Dℓ(x) dx

︸ ︷︷ ︸

data term

+

k∑

ℓ=1

∫

Sℓ

Vℓ(s) ds

︸ ︷︷ ︸

smoothness term

. (1)

Here, the data terms Dℓ describe the likelihood that a given point x should
be labeled ℓ and the smoothness terms Vℓ encode the likelihood that a point s
should separate the label ℓ−1 from label ℓ. Sℓ describes the separating boundary
between the region of label ℓ and ℓ − 1. It is popular to choose Dℓ to be the
negative log-likelihood of a precomputed GMM for the label ℓ and to use a
GAC-like function for Vℓ [14]. In particular, Vℓ may depend on ℓ if we know
beforehand that certain boundaries tend to be stronger than other boundaries.
We will discuss this in detail for the experiments presented in Section 4.

In E, we assume that the area of label ℓ− 1 is completely surrounded by the
area of label ℓ. Otherwise, the second sum of (1) would contain O(k2) summands
instead of k. This nested labeling setup is essential for the energy minimization
approaches that we discuss in this paper. It was shown [15] that the global
minimum of the spatially discretized energy E can be found by solving a single
graph cut problem. While [15] did not enforce the nestedness of the labeling,
this was circumvented in [1] by introducing a minimal distance constraint (cf.
Section 2.1). In [15], each pixel x is represented by k binary variables x0, . . . , xk−1

where u(x) = ℓ is encoded by the k variables xi = [i < ℓ]. Figure 3 illustrates
this for k = 3. The data term for any pixel x can then be represented as the

3 While we assume gray-scaled volumetric images, the presented framework can easily
be extended to more general appearance models and image domains.
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Fig. 4. Left: By using a tubular distance prior of t = 2, we enforce the constraint that
every pixel within distance t from any green one (labeled 2) must have label ℓ > 0
(blue or green). Right: We enforce this by ∞-edges from nodes x1 (green layer) to x0

(blue layer). The dashed edges are ∞-edges enforcing x1 ⇒ x0 (cf. (2)).

submodular function

D(x) = D0(x)x̄0 +

k−1∑

ℓ=1

Dℓ(x) · x̄ℓxℓ−1 +Dk(x)xk−1 +

k−1∑

ℓ=1

∞ · x̄ℓ−1xℓ (2)

While the ∞-terms are not relevant in order to evaluate D(x), a minimization of
these terms for general binary xi leads to values for xi that guarantee a labeling
u(x) according to the table in Figure 3. This is because a minimum will enforce
the logical condition xℓ ⇒ xℓ−1. As a result, the vector (x0, . . . , xk−1) starts
with entries xℓ = 1 followed by entries xℓ = 0. Minimizing D leads therefore to
a labeling u(x) =

∑

i<k xi.
Since also the smoothness term of (1) can be represented as a submodular

function on the binary variables, we obtain an overall submodular function that
we like to minimize. As a result, the submodular function associated with E can
be minimized using a graph cut approach [16, 17]. We denote the involved graph
as G = (X × L∗, E , c) where X denotes the pixel set, L∗ the label set without
the background label ’0’ and c : E → R+ the capacity function.

2.1 Tubular Distance Prior

For medical applications, we often know the minimal distance of two subsequent
surfaces. In other words, we know a lower bound on the tubular distance4

distT(Sℓ+1, Sℓ) = min
s1∈Sℓ+1

min
s2∈Sℓ

‖s1 − s2‖ .

Let us assume now that in our given application the minimal distances
t1, . . . , tk−1 > 0 are given. Then, solving the problem:

min
u:X→L

E(u) , s.t. distT(Sℓ+1, Sℓ) ≥ tℓ for ℓ < k (3)

can be addressed by adding ∞-terms to the overall energy. The goal is to end
up with an energy of ∞ as soon as the labeling is infeasible. In order to do so,

4 Note that distT is not a metric, but a pseudosemimetric.



Hausdorff Distance Constraint for Multi-Surface Segmentation 5

let us denote as

Ntℓ(x) = {y ∈ X| ‖x− y‖ < tℓ}

the neighborhood of x that consists of all points y that are within a ball of radius
tℓ > 0. The logical constraint that we want to enforce for the global solution of
(3) is that u(x) = ℓ implies u(y) ≥ ℓ−1 for all y ∈ Ntℓ(x). In [1] it was proposed
to model this by considering the following energy (cf. Figure 4)

Et(u) = E(u) +
∑

ℓ∈L

∑

x∈X

∑

y∈Nt
ℓ
(x)

∞ · ȳℓ−1xℓ. (4)

In the following, we refer to the graph associated with the energy Et as Gt =
(X ×L∗, Et, ct). This graph is a super-graph of the graph G of Section 2. Besides
the edges of G, Gt consists of ∞-edges described in (4).

In the next section, we will show how a Hausdorff distance prior can also
be added to this framework by adding more logical constraints. As long as they
are of the form ∞· x̄y they can always be modeled by introducing ∞-edges into
the existing graph. As it will turn out, finding the correct edges is potentially
NP-hard and we will use a submodular-supermodular procedure in order to solve
this problem.

3 Hausdorff Distance Prior

In the last section, we revisited how the global optimum of a classical multi-
labeling problem can be solved if the surfaces Sℓ that describe the boundaries
of each label are enclosed by one another. In addition, we mentioned how to
incorporate a tubular distance prior. It turns out that these tools are very useful
for medical images. Nonetheless, the outer boundaries of an object might be
rather weak. As a consequence, it is possible that the boundary of the outer
labels is leaking and will only be constrained by the smoothness term of (1)
(cf. Figure 7). This behavior cannot be explained anatomically, because every
outer muscle or outer membrane can only expand until a certain distance from
the enclosing organ is reached. This means that the Hausdorff distance between
subsequent surfaces

distHD(Sℓ, Sℓ−1) = max
s1∈Sℓ−1

min
s2∈Sℓ

‖s1 − s2‖ (5)

is bounded from above. It turns out that incorporating the Hausdorff distance
constraint into the multi-surface segmentation leads to an energy that is neither
completely submodular nor completely supermodular. Interestingly, the super-
modular part of this penalty vanishes in a certain restricted 1D-situation. This
is essential to the approximation approach that we propose. In Section 3.1, we
will show that the Hausdorff distance prior involves a combination of a sub- and
a supermodular energy part and in Section 3.2 we will show that the supermod-
ular energy part vanishes for a specific 1D problem. In Section 3.3, we will use
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choose one

Fig. 5. Left: By using a Hausdorff distance prior of H = 2, we enforce the constraint
that at least one pixel within a distance of H from any blue pixel (labeled 1) must have
label ℓ > 1 (green). Right: Therefore, we must choose the correct ∞-edge from the
nodes x0 (blue layer) to x1 (green layer). This makes the problem potentially NP-hard.

this observations in order to approximate the overall energy. To this end, we
have to redefine the involved graph in every iteration. While the graph structure
changes, the involved energy is always an upper envelope of the supermodular
function and the energy of the global minima is non-increasing. Therefore, our
approach is a variant of the submodular-supermodular procedure [8] that will
always converge towards a local minimum. In Section 4 we will present these
minima for some real-world examples.

3.1 Sub- and Supermodularity of the general Prior

In the following, we assume that for a pair of subsequent surfaces (Sℓ, Sℓ+1), both
a lower bound tℓ > 0 for the tubular distance and an upper bound Hℓ > 0 for
the Hausdorff distance is given. Then, we are interested in solving the following
energy problem:

min
u:X→L

E(u) , s.t. distT(Sℓ+1, Sℓ) ≥ tℓ for ℓ < k

distHD(Sℓ+1, Sℓ) ≤ Hℓ for ℓ < k (6)

While transforming the tubular distance constraint into a graph cut problem
can be easily done, it is much more difficult for the Hausdorff distance prior Hℓ.
The logical constraint that we want to enforce is:

u(x) = ℓ ⇒ ∃y ∈ NHℓ
(x) : u(y) = ℓ+ 1 (7)

Similar to the tubular distance prior, we can translate this into the following
penalty term (cf. Figure 5)

pℓ(x) = ∞ · xℓ−1 ·
∏

y∈NH
ℓ
(x)

ȳℓ. (8)

Theorem 1. The implication of (7) is true iff pℓ(x) = 0.
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xℓ−1 y0
ℓ y1

ℓ p(xℓ−1, y
0
ℓ , y

1
ℓ ) p(1, y0

ℓ , y
1
ℓ ) p(xℓ−1, 0, y

1
ℓ )

0 0 0 0 - 0
0 0 1 0 - 0
0 1 0 0 - -
0 1 1 0 - -
1 0 0 ∞ ∞ ∞
1 0 1 0 0 0
1 1 0 0 0 -
1 1 1 0 0 -

Table 1. Hausdorff Distance Penalty: Because p(1, ·, ·) is supermodular and
p(·, 0, ·) is submodular, p cannot be minimized via graph cuts [16, 17].

Proof. Following the definitions of xℓ−1 and yℓ, the expression pℓ(x) = 0 is
equivalent to

u(x) ≥ ℓ ⇒ ∃y ∈ NHℓ
(x) : u(y) ≥ l + 1. (9)

Since the two expressions (7) and (9) are both obviously true for u(x) < ℓ, we
have to consider the following two remaining cases

Case 1: u(x) = ℓ

In that case, (7) implies (9). If on the other hand (7) is false, all y ∈ NHℓ
(x)

are not labeled ℓ+ 1. Because of the nested labeling constraint, these labels
have to be all less than ℓ+ 1 which proves that also (9) is false.

Case 2: u(x) > ℓ

In that case, (7) is always true. Therefore, we have to proof that the RHS of
(9) is also always true. Since x ∈ NHℓ

(x) and u(x) ≥ ℓ + 1, the RHS of (9)
is in fact also always true.

⊓⊔

The penalty term (8) can be used in order to enforce the Hausdorff distance
constraints by considering the following overall energy:

Et,H(u) = Et(u) +
∑

ℓ∈L

∑

x∈X

pℓ(x) (10)

From Table 1 it is clear that pℓ(x) is not submodular as soon as the neighborhood
NHℓ

(x) consists of more then one pixel. This means that the energy cannot be
minimized via graph cut [17, Theorem 6.1]. Therefore, we want to apply the
submodular-supermodular procedure. The central point of this procedure is to
find a submodular upper envelope E(n) to the energy Et,H that touches Et,H at
the global minimizer of E(n−1). In Section 3.3 we will create energies that have
exactly this property. The creation of these energies depends on an important
property for certain 1D problems that we will discuss in Section 3.2.
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Fig. 6. Left: Examples for a segmentation with Hausdorff distance prior H1 = 2 if the
inner segment is connected and contains y. Right: This can be enforced by ∞-edges
that follow the negative gradient of the signed distance map with respect to y.

3.2 Pure Submodularity of a 1D Prior

In Section 3.1 we showed that incorporating the general Hausdorff distance prior
into multi-surface segmentation is potentially NP-hard. In particular, we showed
that if there are at least two neighboring pixels involved for which the Hausdorff
distance constraint might be violated, the problem becomes also potentially NP-
hard. This means that even for a 1D image segmentation, the Hausdorff distance
constraint cannot be solved globally optimal. The whole situation changes, if the
constraint has only to be checked with respect to one other 1D-pixel. In that
case it results in adding one additional edge per pixel into the graph Gt. One
of these situations is depicted in Figure 6. It assumes that we have a ternary
labeling problem, i.e., L = {0, 1, 2} and that the following holds:

– The segment with the label ℓ = 2 is connected, i.e., it is an interval.
– A pre-defined pixel y lies inside of this interval.

If we want to enforce a maximal Hausdorff distance of H1, we know that for
every pixel z ≥ y + H1 or z ≤ y − H1, we only have to enforce the Hausdorff
distance constraint with respect to z −H1 resp. z +H1. These constraints can
be enforced by adding ∞-edges into the graph associated with Et. These edges
point into the negative gradient’s direction of the distance map with respect
to the point y. The pixels in the interval ]y − H1, y + H1[ cannot violate any
constraint because the distance between these points and y is smaller than H1

(Figure 6, left). Nonetheless, we can add edges from these nodes to y in order to
ensure that y is chosen as a point of the interval (dashed edges in Figure 6).

While the application of this specific 1D image segmentation is rather limited,
there is an obvious extension to arbitrary dimensions, namely the problem of
multi-labeled image segmentation with a circular core of label ℓ = k. A variation
of this idea idea was used in [2], where the authors used star-shaped cores.
While it is also easy to find the core of star-shaped areas by just following
the line from any pixel towards the star center, this path is not the shortest
path to the star’s boundary. That is the reason why [2] does not optimize the
Hausdorff distance. Instead it considers a maximal distance constraint for a polar
representation of shapes. Besides the theoretical drawback of not minimizing the
Hausdorff distance, there is also a practical drawback. Namely that only star-
shaped surfaces can be detected. For more complex objects like the bifurcated
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carotid artery or the airways of the lung, this strong shape constraint does
not hold any longer and different approaches have to be used. In [2] this was
addressed by detecting the core of the true segmentation in a pre-processing
step that does not use the same global energy. While this approach works for
applications where a coarse segmentation can be easily detected, this method
becomes more difficult for applications like brain segmentation where detecting
this core segment is as difficult as finding the right segmentation.

In this work, we want to advocate that such a coarse segmentation is in fact
not necessary. To see this, consider again the above mentioned 1D-problem. In-
stead of the chosen ∞-edges, we can also choose edges that follow the negative
gradient’s direction of the signed distance map with respect to the true segment
u−1(2). If we do not know this segment, we can iterate between segmentation and
adjusting the ∞-edges associated to the Hausdorff distance. We will use this idea
in Section 3.3 in order to develop an iterative method for the general segmenta-
tion problem. In order to do this, we re-define the signed distance transform of
every label after each segmentation and iterate this process. We will show how
this approach provides us with a submodular-supermodular procedure that will
converge towards a local minimum of Et,H .

3.3 Submodular-Supermodular Procedure

In Section 3.2 we explained how the challenging Hausdorff distance constraint
can be incorporated into the multi-surface segmentation if the interior of every
surface is circular and the center point is known. For this extremely limited
case, we explained how the signed distance map with respect to the interior
of Sℓ−1 can be used to define constraints for the label ℓ. These observations
are the core elements of our submodular-supermodular procedure described in
Algorithm 1. In every iteration the signed distance map is re-computed with
respect to previously computed segments. In order to show that this algorithm
is a submodular-supermodular procedure, we have to prove the following theorem:

Theorem 2. Algorithm 1 is a submodular-supermodular procedure, i.e., it fulfills
the following properties of the energies E(n) and their global minimum u(n):

1. E(n) is submodular.

2. E(n)(u) ≥ Et,H(u) for all labelings u : X → L.
3. E(n+1)(u(n)) = Et,H(u(n)).

Proof. The three properties follow from the described construction as follows:

1. Since the graph G(n) can be used to minimize E(n), E(n) has to be submod-
ular [16, 17].

2. If E(n) or Et,H are finite, their energy is exactly E. Therefore, it is enough to
study the cases when either of these two energies are infinite because some of
the incorporated constraints are violated. If E(n)(u) is infinite, the inequality
E(n)(u) ≥ Et,H(u) is naturally true. If one the other hand Et,H(u) = ∞,
there exists a point x ∈ X that violates the Hausdorff distance constraint Hℓ
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Algorithm 1 Submodular-Supermodular Procedure

Input: Multi-surface graph G = (X × L, E , c) associated to E,
tubular distance constraints tℓ and Hausdorff distance constraints Hℓ.

Output: Labeling u : X → L that locally minimizes Et,H .
1: Set n = 0.
2: Create G(n) = Gt according to Section 2.1.
3: Find global minimum u(n) of E(n) associated to G(n).
4: repeat

5: for ℓ = 2, . . . , k do

6: Compute signed distance transforms dt
(n+1)
ℓ (x)

for the sets Xℓ = {y ∈ X |u(n)(y) ≥ ℓ}.
7: end for

8: n := n+ 1
9: Create graph G(n) = Gt according to Section 2.1
10: for ℓ = 1, . . . , k − 1 do

11: for x ∈ X do

12: Let v := Hℓ · ∇dt
(n)
ℓ+1(x).

13: Find maximal t ∈ [0, 1] such that for y := x− t · v the following holds

dt
(n)
ℓ (y) = dt

(n)
ℓ (x)−Hℓ · t.

14: Add ∞-edge to G(n) from xℓ to yℓ+1

15: end for

16: end for

17: Find global minimum u(n) of E(n) associated to G(n).
18: until u(n) = u(n−1)

19: return u(n)

with u(x) = ℓ− 1. This means that none of the points of {y ∈ X| ‖x− y‖ ≤
Hℓ} are labeled ℓ. Since these points include also the point y computed in
Step 13, one ∞-edge of G(n) has to be cut and thus, E(n)(u) = ∞.

3. Since E(n+1) selects for every Hausdorff distance the active constraint with
respect to u(n), E(n+1)(u(n)) is finite and the equality holds.

⊓⊔

Note that Step 13 in Algorithm 1 follows the negative gradient of the signed
distance map until either the Hausdorff distanceHℓ or the medial axis is reached.
This is an analogous case to the dashed edges in Fig. 6. While these edges
were optional for the 1D case, they are important for Algorithm 1 to become a
submodular-supermodular procedure. If we would not use these edges, the proof
of Property 2 in Theorem 2 would otherwise not be possible.

All solutions u(n) computed by Algorithm 1 fulfill the Hausdorff distance
constraints, but it is possible that the constraints enforced in Step 14 are too
tight. Therefore, a re-iteration is necessary. While it is easy to prove that the
algorithm will terminate, it would rely on the fact that the set of all possible
label settings is finite. This is a very bad upper bound for the running time.
In practice, we never experienced more than 10 iterations which makes this
algorithm very attractive for practical applications.
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Fig. 7. To segment the left ventricle of a heart (left), we use conservative seeds (2nd

f.l.). The two right images show the segmentation w.r.t. a pure tubular constraint (2nd

f.r.) and a combination of tubular and Hausdorff distance constraint (right).

4 Experiments

Geometrically constrained multi-surface segmentation is particularly useful in
medical applications where segments must be consistent with the anatomy. We
use grayscale medical images that should be partitioned into k nested segments
or layers. Each segment is represented by one label. To guide the segmentation,
we also employ some small set of “seeds” from a user. The seeds provide hard
constraints and train GMM appearance model for every segment/label. We use
the standard EM-style re-estimation of GMM after each convergent segmentation
of our algorithm 1. In our examples the image edges are much stronger for the
inner segment than for the outer one. Therefore, the edge sensitivity for the core
segment Vk is scaled up by a factor of 5 in all the experiments.

In our first experiment we segmented the left ventricle of a heart in an MR
image. Very conservative seeds (cf. Figure 7) were mainly used to provide rea-
sonable color models for each label. While the segmentation w.r.t. to the tubular
constraint t1 = 2 is locally satisfactory for the left ventricle, the label for the
surrounding muscle strongly leaks into the background. This is mainly because
the lower part of this muscle does not have strong image edges. Adding the
Hausdorff distance constraint H1 = 10 gives a much more accurate delineation
of the ventricle. The wrong labeling in the upper right corner of the image also
disappears. Note that we receive the same result for a range of t1 from 1 to 3
and for a range for H1 from 8 to 12.

In the second experiment, we apply the same technique to an MR image of
the brain (cf. Figure 8). Both tubular constraints were set to t1 = t2 = 3 and
the Hausdorff distance constraints were set to the tight value of H1 = 4 for
the outer segment and unconstrained H2 = ∞ for the inner segment. Note that
the Hausdorff distance constraint gave much better results with even the 3-label
segmentation (top row). In particular, the fine structure of the gray matter (blue
label) was detected. Also, the skull is automatically merged into the background
label. These results are not possible without the Hausdorff distance constraint.
As expected, the 4-label case (bottom row) gives semantically more reasonable
results than the 3-label case.

In a last experiment, we segmented challenging 3D ultrasound data of the
carotid artery. We used a tubular distance constraint of t1 = 2 and a Hausdorff
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image / seeds segmentation w.r.t. [1] presented method

Fig. 8. To segment the brain (1st row, left), we use conservative seeds (2nd row, left).
The 2nd column shows the result with mere tubular distance constraints and the 3rd

column also incorporates the Hausdorff distance constraint. The 1st and 2nd row shows
the segmentation results with 3 and 4 labels resp.

distance constraint of H1 = 10. Even though the data is very noisy, we obtain a
good segmentation that accurately follows the bifurcation (cf. Figure 9).

5 Conclusion and Future Work

We showed how the Hausdorff distance constraint can be incorporated into multi-
surface segmentation without topological limitations. We provided a submodular-
supermodular procedure that can find an approximative solution. We also showed
that these solutions provide us with reasonable segmentation for challenging 2D
and 3D data sets. One major advantage with respect to prior work is that we
do not rely on a center point/line and, thus, are not restricted to star shaped
segmentations. There are many possible extensions of our work that we would
like to address in the future.

First of all, it makes sense to use more flexible model estimators than GMM.
Secondly, the memory consumption of the tubular distance constraint is very
extensive. Similarly to the Hausdorff distance constraint, one could try to add
only those edges that are really necessary. Thirdly, we like to explore other
distances reflecting the elasticity of the involved tissues and muscles.
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Fig. 9. To segment the carotid artery (left column), we use a 3-label image segmenta-
tion problem with tubular distance and Hausdorff distance constraint. The segmenta-
tion (middle column) defines a 3D image of the two segmented surfaces (right column).
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