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Abstract. This paper is concerned with energy-based image segmen-
tation problems. We introduce a general class of regional functionals
defined as an arbitrary non-linear combination of regional unary terms.
Such (high-order) functionals are very useful in vision and medical ap-
plications and some special cases appear in prior art. For example, our
general class of functionals includes but is not restricted to soft con-
straints on segment volume, its appearance histogram, or shape.
Our overall segmentation energy combines regional functionals with stan-
dard length-based regularizers and/or other submodular terms. In gen-
eral, regional functionals make the corresponding energy minimization
NP-hard. We propose a new greedy algorithm based on iterative line
search. A parametric max-flow technique efficiently explores all solutions
along the direction (line) of the steepest descent of the energy. We com-
pute the best “step size”, i.e. the globally optimal solution along the
line. This algorithm can make large moves escaping weak local minima,
as demonstrated on many real images.

1 Introduction

Many existing image segmentation methods optimize segments S with respect
to quality functionals of the form

E(S) = U(S) +Q(S), (1)

where term U(S) describes some regional properties of the segments and Q(S) is
a regularization prior for the segmentation boundary or shape. Such functionals
have many weak local minima on real images and global optimization methods
are preferred. Many powerful optimization methods are limited to special forms
of U(S) and Q(S). For example, in continuous formulations the segmentation
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S is a subset of some continuous image domain Ω ⊂ Rn. Current optimization
methods computing globally optimal S require that term U(S) is linear with
respect to characteristic function 1S and regularization term Q(S) is a convex
TV-based functional [1–3]. In discrete formulations where segmentation is de-
fined as a vector of binary variables S = {sp|p ∈ Ω} for a finite set of pixels
Ω ⊂ Zn, efficient combinatorial methods for global optimization require that
U(S) be a unary term and Q(S) be a quadratic submodular term [4, 5].

This paper proposes a general class of non-linear regional functionals R(S)
that can impose significantly more powerful constraints over segment regions
than standard unary or linear functionals U(S). Our regional functionals R(S)
could still be combined with some boundary regularization. Thus, our overall
segmentation energy includes two terms

E(S) = R(S) +Q(S), (2)

where Q(S) is a standard quadratic submodular energy (in the discrete case) or
a convex TV-based functional (in the continuous case). For example, Q(S) could
represent segmentation boundary length.

Below we review standard unary/linear terms U(S) and motivate an exten-
sion to a general class of non-linear regional functionals R(S). The introduction
concludes with a summary of contributions in this paper.

1.1 Prior art on regional constraints in segmentation

The notion unary term comes from MAP-MRF labeling literature and corre-
sponds to a sum of individual pixel potentials inside a posterior energy. For
example, common MRF-based segmentation energies [6, 7] include a unary term
representing an appearance model as the sum of log-likelihoods for intensities Ip∑

p∈Ω

− ln Pr(Ip|Lp) (3)

where variables Lp are pixel labels (object or background), and probability distri-
butions Pr(·|obj), Pr(·|bkg) are known models for intensities inside two segments.
Using binary variables sp (values 1 and 0 represent segment interior and exterior,
respectively) this unary log-likelihood term can be equivalently represented as

U(S) =
∑
p∈Ω

fp · sp (4)

for fp = − ln
(

Pr(Ip|obj)
Pr(Ip|bkg)

)
. In general, any unary energy term can be written as

expression (4) for some potentials fp. Since (4) is linear w.r.t. binary variables
sp, unary energy terms may also be called linear. In a continuous segmenta-
tion framework the analogue for the unary term (4) is a linear functional w.r.t
characteristic function 1S of segment S

U(S) =

∫
S

f dx =

∫
Ω

f · 1S dx (5)
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where f : Ω → R is a given scalar potential function.
Linear functionals like (4) or (5) are widely used in computer vision [6–8]

to express various regional constraints on segments (e.g. appearance model, vol-
umetric ballooning, etc). The main advantage of linear regional functionals is
that many efficient global optimization algorithms [5, 1–3] can easily incorpo-
rate them. However, linear functionals can enforce only a fairly limited set of
properties on segments. For example, standard linear ballooning term

U(S) = −V (S), where V (S) =

∫
Ω

1S dx

can encourage larger size. But practically useful (e.g. in medical applications)
bias towards a specific target value V0 for segment size, i.e.

R(S) = (V (S)− V0)
2

cannot be expressed linearly. It is also known (see Boykov-Jolly in Figs. 3-7) that
linear log-likelihood term (3) is far from ideal for enforcing appearance mod-
els. It is particularly problematic in gray-scale medical images (see Figs. 4,5,9)
due to significant overlap between the object and background intensity distri-
butions. Limitations of unary/linear terms motivated some researchers to use
non-linear regional appearance models. For example, [9–11] minimize some dis-
tances (i.e.KL or Bhattacharyya) between the observed and target intensity
distributions. There are other examples of prior work using specific non-linear
regional functionals. For example, [12] use mutual information as an appearance
model and [13, 14] enforce non-linear constraints on segment’s area.

In general, optimization of non-linear regional terms is NP-hard and can-
not be addressed by standard global optimization methods. Some earlier papers
developed specialized techniques for particular forms of non-linear regional func-
tional. For example, the algorithm in [11] was developed for minimizing Bhat-
tacharyya distance between distributions and a dual-decomposition approach in
[14] applies to convex piece-wise linear regional functionals3. An active-contour
technique in [9] addresses arbitrary distance measures between distributions, but
any gradient flow is likely to lead to a weak local minimum; see local line search
in Figs. 4,6. Combinatorial techniques in [12, 10] apply to general non-linear re-
gional functionals, as defined in this paper, and they can make large moves by
globally minimizing some approximating energy. However, we show that greedy
algorithms in [12, 10] may stop at solutions that are not even a local minimum
of the actual non-linear functional; see Fig. 8 and a discussion in Sec. 3.4.

1.2 Contributions

In Section 2 we introduce a general class of non-linear regional functionals R(S)
defined as an arbitrary non-linear combination of any regional unary terms. All
examples of regional functionals mentioned in the previous section are special

3 E.g., [14] can use distances between bin counts, but not normalized distributions.
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cases of our general class. Our functionals can enforce constraints on area or
volume and penalize any distance metric (KL, Bhattacharyya, L1 etc) between
a segment’s intensity distribution and some target distribution. Other practically
useful examples of our regional functionals are discussed in future work Section 5.

In Section 3 we propose a general line-search cuts algorithm for minimizing
energies (2) combining any non-linear regional functional R(S) with an arbitrary
submodular term Q(S). At each iteration the method explores a “line” of so-
lutions along the gradient direction and selects a global minimum on this line.
We use an efficient parametric max-flow technique [15] to exhaustively traverse
this line4. The algorithm can guarantee only a local minimum at convergence,
however “large moves” allow to escape many weak solutions. Our method fol-
lows the exact (global) line-search principle [17]. While many possible variants of
our technique, e.g. standard backtracking line-search, may reduce the runtime,
in general, they are more likely to get stuck in local minima.

In contrast to many specialized techniques, our optimization method applies
to arbitrary non-linear regional functionals. Section 4 shows our results for dif-
ferent applications on synthetic, medical, and natural images. We compare our
global line-search approach to basic gradient descent (see local line-search in
Figs. 4,6) and discuss limitations of earlier “large move” methods [12, 10]. These
two methods are also applicable to general non-linear regional functionals, but
unlike our method may stop at solutions that are not even a local minimum
of the actual non-linear functional (see Fig. 8 and Sec. 3.4). Future work and
extensions for non-linear regional functionals are reviewed in Sec. 5.

2 Regional Functionals

This section discusses the term regional functionals. Let I : Ω → Rm be an image
with domain Ω ⊂ Rn and m-dimensional colors. As discussed in Section 1.1, the
most common type of regional terms used in segmentation is a linear functional
U(S) which can be represented via arbitrary scalar function f : Ω → R

U(S) =

∫
S

f(x) dx =

∫
Ω

f(x) · 1S(x) dx =: ⟨f, S⟩ . (6)

Usually, f corresponds to some appearance model based on intensities observed
in image I, see equations (3)-(5). The integral in (6) can be seen as a dot product
between scalar function f and the characteristic function of set S. Thus, in the
rest of this paper we use notation ⟨f, S⟩ to refer to such linear functionals.

Now we introduce a general class of non-linear regional functionals. In par-
ticular, we focus on arbitrary non-linear combinations of linear functionals. We
assume several scalar functions f1, . . . , fk : Ω → R, each defining a linear func-
tional of type (6), and one non-linear function F : Rk → R that combines these
linear functionals in the overall non-linear regional functional

R(S) = RF
{f1,...,fk}(S) = F (⟨f1, S⟩ , . . . , ⟨fk, S⟩) . (7)

4 Our greedy line-search method can also be implemented in continuous framework
for convex TV-based Q(S) using ideas in [16].
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2.1 Examples of Regional Functionals

The following examples describe regional functionals that are very useful in
computer vision applications:

Volume Constraint The volume constraint penalizes a segmentation when its
size deviates from a specific target volume V1:

f1(x) = 1 F (v1) = (v1 − V1)
2, (8)

corresponding to R(S) = RF
{f1}(S) = F (⟨f1, S⟩) = (⟨f1, S⟩ − V1)

2 in (7).

Bin Count Constraint The bin count constraint penalizes a deviation be-
tween the number of segment pixels in a certain bin (appearance model)
and a target count. To that end, we pre-compute k indicator functions fi for
each bin, and in combination with target bin counts V1, . . . , Vk, we consider
the following regional functional:

F (v1, . . . , vk) =
k∑

i=1

(vi − Vi)
2 (9)

Histogram Constraint In addition to penalizing the bin counts, we can en-
force standard distance measures for normalized histograms. To do this,
we need k indicator functions fi for every bin and an additional function
fk+1(x) = 1 encoding the size of the whole segment. Given a target his-
togram q1, . . . , qk the regional functional is defined:

F (v1, . . . , vk+1) = − log

(
k∑

i=1

√
viqi
vk+1

)
(10)

for the Bhattacharyya distance or

F (v1, . . . , vk+1) =

k∑
i=1

vi
vk+1

log

(
vi

vk+1qi

)
(11)

for the Kullback-Leibler divergence.

We will show in Section 3.3 how regional functionals can be approximated lin-
early. It turns out that the linear approximation can be translated into a unary
potential functional. In particular, for all the given examples we will also provide
the exact Taylor approximation in terms of these unary potentials.

3 Line-Search Cuts

Below we describe a general optimization method for segmentation energies (2)
with arbitrary non-linear regional functionals R(S) defined in (7). Section 3.1
reviews standard line-search techniques [17]. Section 3.2 shows how a global line-
search for energy (2) can be approximated by minimizing a Lagrangian of (2)
using efficient parametric max-flow techniques [15, 16]. At each iteration, our
Lagrangian uses a linear approximation of R(S) detailed in Section 3.3. Many
general properties of our greedy descent algorithm are summarized in Section 3.4.
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Fig. 1. Overview of line-search cuts. At each iteration, the algorithm finds global min-
imum S∗ for energy E(S) along a curve approximating the line of gradient descent ∇E
from current solution S0. This follows the exact (global) line-search principle [17].

3.1 Standard line-search techniques

Standard iterative line-search methods for minimizing a function explore the
direction of gradient descent at a current solution and use different strategies
for selecting a step size (see [17]). For example, consider energy function E(S)
and current solution S0 illustrated in Fig. 1(a). Commonly used backtracking
line-search makes a fixed size step in the direction of the gradient descent ∇E.
If the energy goes up, then the algorithm backtracks and a smaller step size is
tested. In case where the whole line can be explored efficiently, exact line-search
[17] can be used to jump to the global minimum of energy E(S) on the line. In
this paper we refer to this specific technique as global line-search.

3.2 Global line-search in the space of segments

We will explore the global line-search idea to develop a “large move” optimization
algorithm avoiding weak local minima. It is possible to traverse the gradient
descent line explicitly either by scaling a gradient-flow vector field for contour
S0 or by scaling an embedding function within the level-sets framework. However,
it is unclear at what intervals to probe the points on this line: large intervals can
miss a good solution, while probing at small intervals could be too slow. Instead,
we propose to explore some implicitly defined “line” closely approximating the
gradient descent direction (see black curve in Fig. 1), which can be fully explored
by parametric max-flow techniques automatically computing all intervals.

We define line as one-dimensional set {S(d)|d≥0} parametrized by scalar d

S(d) = argmin
||S−S0||<d

Ẽ0(S), for Ẽ0(S) := U0(S) +Q(S) (12)

where each S(d) is a minimum of a quadratic approximation of energy E(S)
within distance d from S0 and U0(S) is a first-order Taylor approximation of
non-linear regional functional R(S) near S0, as detailed in Section 3.3. In case
of discrete labelings S set {S(d)|d≥0} is finite. We call it a line by analogy with
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the case of continuous S. Following [19], higher grid resolution makes finite set
{S(d)|d≥0} a denser approximation of a continuous line in the space of segments.

Extending ideas in [18, 16], line {S(d)|d ≥ 0} can be re-parameterized as
{S(t)|t ≥ t0} via unconstrained Lagrangian Lt(S) and time parameter t

S(t) = argminLt(S), for Lt(S) := Ẽ0(S) +
1

2(t− t0)
· ||S − S0||2. (13)

The L2 distance ||S − S0||2 in (13) can be approximated by a linear term

||S − S0||2 ≈ 2 ·
∫
∆S

d0(x) · dx = 2 ·
∫
Ω

d′0(x)(1S − 1S0) · dx (14)

using distance map d0 for segment S0 or its signed version d′0, see [18] and
Fig. 1(b). Since Lagrangian (13) has only linear and quadratic submodular terms,
all solutions S(t) can be efficiently explored by parametric max-flow methods [15,
16]. Our global line-search selects the best solution S∗ with respect to original
energy E in (2); see Fig. 1(a).

This approach can make “large moves”. However, the only guarantee at con-
vergence is that we have a local minimum of the original energy E(S). Indeed,
since all S on our curve are minima of Lagrangian (13) then for any t > t0

0 =
dẼ0

dS
+

S − S0

t− t0
=⇒
t→t0

∂S

∂t
= −dU0

dS
− dQ

dS
= −dR

dS
− dQ

dS
= −dE

dS
.

The second part is true since U0 is a first-order approximation of R at S0; see
Sec. 3.3. Thus, our “line” follows gradient flow of E(S) near t0. At convergence
S = S0 for all t ≥ t0. Thus,

∂S
∂t = 0 and S0 is a local minimum where dE

dS = 0.
Our approach combines the benefits of “large moves” and local gradient de-

scent. Quadratic approximation energy Ẽ0(S) monotonically decreases along our
“line” from S0 to its global minimum at S̃; see Fig. 1(a). But, true energy E(S)
is guaranteed to decrease along line S(t) only near t0 where U0 approximates R
sufficiently well. Values of E(S) can go up or down for larger t ≫ t0.

3.3 Approximating Regional Functionals for Line-Search Cuts

To apply line-search cut to energy E = R + Q in (2) with non-linear regional
term R we need approximation Ẽ0 = U0 +Q, see (12). Functional R in (7) can
be approximated with linear term U0 of type (6) using Taylor expansion. One
way to derive such first-order approximation is to relax R(S) by replacing S
with real-valued function u : Ω → [0; 1]. The Gateâux derivative of R(u) is

∂R

∂u
=

∂RF
{f1,...,fk}

∂u
=

k∑
i=1

∂F

∂vi
· fi (15)

and the Taylor approximation R̃ of R developed at u0 becomes

R̃F
{fi}k

i=1
(u) =RF

{fi}k
i=1

(u0) +
k∑

i=1

∂F

∂vi
(⟨f1, u0⟩ , . . . , ⟨fk, u0⟩)︸ ︷︷ ︸

(∗)

· ⟨fi, u− u0⟩ . (16)
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Constraint R(S) Scalar Function g(x) for Linear Approximation U0(S)

Volume (8) 2 (⟨f1, S0⟩ − V1)

Bin Count (9) 2
∑k

i=1 (⟨fi, S0⟩ − Vi) · fi(x)

Histogram distance
Bhattacharyya (10)

∑k
i=1

√
⟨fi,S0⟩qi
⟨1,S0⟩3

−
√

qi
⟨1,S0⟩⟨fi,S0⟩

fi(x)

2
∑k

i=1

√
⟨fi,S0⟩qi
⟨1,S0⟩

Histogram distance
Kullback-Leibler (11)

∑k
i=1

[
log

(
⟨fi,S0⟩
⟨1,S0⟩qi

)
+ 1

]
·
[

fi(x)
⟨1,S0⟩

− ⟨fi,S0⟩
⟨1,S0⟩2

]
Table 1. Scalar function g(x) defining first-order approximation U0(S) in (19) for
several examples of non-linear regional functional R(S) presented in Section 2.1.

Calling the expression (∗) as ∂F
∂vi

(u0), (16) can be written as

R̃F
{fi}k

i=1
(u) =RF

{fi}k
i=1

(u0)−
k∑

i=1

∂F

∂vi
(u0) ⟨fi, u0⟩︸ ︷︷ ︸

constant wrt. u

+

⟨
k∑

i=1

∂F

∂vi
(u0)fi︸ ︷︷ ︸

linear term

, u

⟩
. (17)

The same expression can also be derived without referring to this relaxation
approach. In that case, one has to consider R(S) as a functional from the F2-
vector space of subsets into R. For simplicity, we derived this expression only for
the relaxed version of the energy. The analog linear approximation for the set
functional RF

{fi}k
i=1

(S) developed at S0 then becomes

R̃F
{fi}k

i=1
(S) =RF

{fi}k
i=1

(S0)−
k∑

i=1

∂F

∂vi
(S0) ⟨fi, S0⟩︸ ︷︷ ︸

constant wrt. S

+

⟨
k∑

i=1

∂F

∂vi
(S0)fi︸ ︷︷ ︸

linear term

, S

⟩
. (18)

During energy minimization, we can ignore the constant term of (18). Denoting

g(x) :=
∑k

i=1
∂F
∂vi

(S0)fi(x), the linear approximation of R can be written as

R̃F
{fi}k

i=1
(S) =

∫
Ω

g · 1S dx+ const = U0(S) (19)

Thus, the first-order Taylor approximation of our general regional functional
R(S) is a linear functional defined by some scalar function g(x). This linear
approximation U0 in (19) can be integrated into Lagrangian (13) and minimized
by parametric max-flow methods, as detailed in Section 3.2. Table 1 specifies
g(x) corresponding to different examples of regional constraints mentioned in
Section 2.1.
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(a) “Manhattan” L1 metric (4-neighborhood)

(b) “Octagonal” metric (8-neighborhood)

(b) Near-Euclidean metric (16-neighborhood)

Fig. 2. Synthetic examples: line-search cuts can generate a “flow” of a 2D contour
under energy E combining quadratic volume constraint (8) and boundary length for
Manhattan (a), octagonal (b), and near-Euclidean (c) homogeneous metrics. Target
volume is set to the initial volume of the shape. The last result is at convergence.

3.4 Properties of line-search cuts

Our line-search cuts method is a second-order descent method related to New-
ton’s technique. However, there are two important differences. First, our qua-
dratic functional Ẽ = U0+Q is not a proper second-order Taylor approximation
for E = R+Q since U0 is only a first-order term for R. Note that a second-order
term for R could be non-submodular for general non-linear regional functionals
and parametric max-flow [15] may not apply5. Second, Newton’s descent finds
global minimum S̃ for approximation Ẽ while we find the global minimum of
exact energy E on a line between S0 and S̃; see Fig. 1(a).

The line search framework is dual to the classical trust region approach to
optimization. The trust region problem [17] is defined as minimization of the
second-order Taylor approximation of the energy over some ball around S0 where
the approximation is “trusted”; see Fig. 1(a). The ball’s radius d is a fixed step
size parameter. The trust region approach is a conservative variant of Newton’s
descent which is often too greedy, particularly when current solution S0 is too far
from a local minimum of the true energy. The constrained optimization defining a
point on our line (12) is a standard formulation of the trust region problem except
that Ẽ is not exactly the 2nd-order Taylor approximation. Note that smaller
radii d in (12) yield steps approximating the gradient descent well. We refer to
an algorithm making steps of some fixed small size d as the local line-search. In
contrast, our global line-search proposed in Section 3.2 finds the optimal step
size giving the largest decrease of true energy E along the line. Such large moves
can escape many weak local minima, as shown in Figs. 4-6.

5 Some approaches with weaker guarantees, e.g. using QPBO, might still be possible.
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(a) BJ[1] (b) ours, 4-n (c) ours, 8-n (d) ours, 16-n
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Fig. 3. Synthetic example: line-search cuts can match object and background intensity
distributions to target distributions (b, w)fg = (0.2, 0.8) and (b, w)bg = (0.8, 0.2) by
minimizing a combination of KL distance (11) and segmentation boundary length for
Manhattan (b), octagonal (c), and near-Euclidean (d) homogeneous metrics. The result
in (a) is the global minimum for Boykov-Jolly segmentation model with the standard
linear log-likelihood term (3) using the same target distributions. When maximizing
unary likelihoods (3) each pixel independently selects the most likely label regardless
of the overall segment appearance. We use (a) to initialize line-search cuts in (b-d).

Two earlier methods applicable to general regional functionals use Newton’s
descent [12] and attempt to approximate trust region [10]. When minimizing
approximation Ẽ the method in [10] does not enforce the standard trust region
constraint ||S−S0|| < d which is critical for making our line follow the gradient
descent direction; see Fig. 1(a). Instead, they combine Ẽ with a heuristic linear
term to damp the Newton’s steps used in [12]. In contrast to us, their steps could
be in the direction opposite to the gradient descent. Consequently, [10] often
converges to solutions far from local minima6 of E; see Fig. 8. In our tests, the
proposed line-search approach outperformed [10] with respect to energy values
and proximity to the ground truth at convergence; see Figs. 2-4,7.

For example, simple synthetic tests in Fig. 2 correspond to contour energy E
combining quadratic volume constraint (8) and geometric boundary length under
various grid approximations [19]. All local minima of E are “circles” of a certain
radius. Our algorithm converges to such “circles” while [10] stops far away from a
minimum for E; see Fig. 8(a). Similarly, Figs. 3(b-d) show our convergence results
for segmentation energy E combining boundary length and KL constraint (11).
The algorithm is initialized by the global optimum (Fig. 3(a)) of the Boykov-
Jolly segmentation energy E (3), combining length and log-likelihoods for the
same target distributions. Clearly, the non-linear regional term corresponding
to KL distance works much better to enforce the desired intensity distributions
inside the segments. The convergence result for [10] is shown in Fig. 8(b).

4 Applications

Below, we apply our method to segmentation of natural and medical images.
Similarly to [15, 11], in all experiments the target intensity/color distributions for
the object and the background were obtained from the ground truth segments.

6 We refer to local minima in the continuous L2 sense. [10] converges to local minima
wrt. certain discrete moves which could be weaker than gradient descent moves.
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Fig. 4. Segmentation results for an MR image of a heart. Maximizing unary log-
likelihoods (3) suffers from the same bias as in Fig. 3(a). Adding length-based reg-
ularization in Boykov-Jolly segmentation does not alleviate the problems of (3). The
local-line search using more powerful KL constraint (11) gets stuck in a local minimum,
whereas the global line-search makes large moves overcoming many weak local minima.
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Ground TruthInitialization
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Fig. 5. Prostate midgland segmentation on T2W MRI, where fast and accurate seg-
mentation is important to the planning of prostate cancer therapy. Both local and
global line-search may obtain similarly good solutions for KL constraint (11), but the
latter works for a wider range of λ.

In many applications, particularly in the field of medical imaging, such target
distributions could be pre-learned. While the previous section’s synthetic image
in Fig. 3 used only two-bins histograms, in this section the histograms have 100
bins for gray-scale medical images in Figs. 4,5,9 and 103 bins (10 per channel)
for color images in Figs. 6,7. We use the floating point precision in the standard
code for graph-cuts [5] and for the parametric max-flow algorithm [15].

Examples in Figs. 4-7 compare the performance of Kullback-Leibler his-
togram constraint (11) to the linear log-likelihood functional (4) à la Boykov-
Jolly [6]. Each of the functionals is combined with the same contrast-sensitive
16-neighborhood boundary regularization term Q(S) = λ

∑
(p,q) wpq · δ(sp ̸= sq)

and minimized for different values of smoothness parameter λ. We use global
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Fig. 6. Results for the “fish” from [7]. Note that Boykov-Jolly is very sensitive to λ.
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Fig. 7. Results for the “soldier” from [7]. The local-line search fails for all λ.

and local line-search methods (see Sec. 3) to optimize energy (2) with regional
functional (11) and standard graph cuts [5] to optimize (1) with log-likelihoods
(4). To initialize the line-search methods, we used the bounding boxes in Figs. 5-
7 and the “max-likelihood” result in Fig. 4. Quantitative results in the top-left
corner of the figures plot the L2 distance (14) between the resulting contour and
the ground truth as a function of the smoothness parameter λ. These plots are
in log-scale. We show the results corresponding to the best λ in each plot.

Figs. 4,5 show 2D MRI examples of a heart and a prostate. In both cases the
Boykov-Jolly solution is far away from the ground truth since the foreground and
background intensity models significantly overlap. In Fig. 4 the local line-search
fails to find a good solution for any smoothness parameter λ, while the global
line-search finds reliable solutions for a wide range of λ in both Figs. 4 and 5.

Figs. 6,7 show examples of natural images from [7]. The results demonstrate
the benefits of minimizing regional functional (11) over linear log-likelihoods
(4). Note that the global line-search outperforms the local-line search over a
wide range of smoothness parameter λ.

Figure 9 shows our segmentation of a carotid artery in a 2D ultrasound
image. We compare two histogram constraints: Kullback-Leibler (11) and Bhat-
tacharyya (10). We use the global line-search and evaluate the results against
the ground truth for each smoothness parameter λ. We show separate experi-
ments for segmenting the outer wall (left) and the lumen (right). The bottom
row shows the results obtained with the best λ. The segmentation results using
KL and Bhattacharyya are similar, while the latter is more “robust” with respect
to the smoothness parameter.
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(a) (b) (c) (d)
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Fig. 8. Results of [10] at convergence on examples in Figures 2-4,7. Unlike our method,
the algorithms in [10, 12] may stop at solutions that are not local minima of E(S).
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Fig. 9. Comparing the performance of Kullback-Leibler histogram constraint (11) (red)
and Bhattacharyya histogram constraint (10) (black) in the task of 2D ultrasound
carotid segmentation, with the outer wall shown on the left and lumen - on the right.

5 Conclusions and Future Work

We introduced a general class of non-linear regional functionals and a powerful
line-search cuts optimization framework that can make large moves escaping
many weak local minima. We showed examples enforcing quadratic constraints
on segment volume, as well as KL and Bhattacharyya constraints on segment
color distributions. There are other interesting examples of non-linear regional
functionals that can be formulated as (7). In the future we plan to study shape
prior for image segmentation. In particular, we observe that geometric shape
moments [20] fall within our general class of non-linear regional functionals (7).

As mentioned in Section 3.2, our general line-search approach to optimizing
non-linear regional functionals can be implemented using convex TV-based op-
timization methods [1–3, 16]. We plan to test such continuous variants of the
technique in Section 3.2 as they should alleviate possible metrication artifacts
of the discrete max-flow algorithms, see Figs. 2,3.

We also wish to explore other line-search strategies (e.g. backtracking). They
may perform better than the local line-search while avoiding the computational
burden of an exhaustive global line-search. Finally, it is possible to generalize
our line-search technique from binary to multi-label segmentation problems.
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