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Fig. 1. Given user scribbles, typical MRF segmentation (Boykov-Jolly) uses a GMM
to model the appearance of each object label. This makes the strong assumption that
pixels inside each object are i.i.d. In contrast, we define a two-level MRF to encourage
inter-object coherence among super-labels and intra-object coherence among sub-labels.

Abstract. In interactive segmentation, the most common way to model
object appearance is by GMM or histogram, while MRFs are used to
encourage spatial coherence among the object labels. This makes the
strong assumption that pixels within each object are i.i.d. when in fact
most objects have multiple distinct appearances and exhibit strong spa-
tial correlation among their pixels. At the very least, this calls for an
MRF-based appearance model within each object itself and yet, to the
best of our knowledge, such a “two-level MRF” has never been proposed.

We propose a novel segmentation energy that can model complex ap-
pearance. We represent the appearance of each object by a set of distinct
spatially coherent models. This results in a two-level MRF with “super-
labels” at the top level that are partitioned into “sub-labels” at the bot-
tom. We introduce the hierarchical Potts (hPotts) prior to govern spatial
coherence within each level. Finally, we introduce a novel algorithm with
EM-style alternation of proposal, α-expansion and re-estimation steps.

Our experiments demonstrate the conceptual and qualitative improve-
ment that a two-level MRF can provide. We show applications in binary
segmentation, multi-class segmentation, and interactive co-segmentation.
Finally, our energy and algorithm have interesting interpretations in
terms of semi-supervised learning.

1 Introduction

The vast majority of segmentation methods model object appearance by GMM
or histogram and rely on some form of spatial regularization of the object labels.
This includes interactive [1–3], unsupervised [4–9], binary [1–3, 8, 9] and multi-
class [4–7, 10] techniques. The interactive methods make the strong assumption
that all pixels within an entire object are i.i.d. when in fact many objects are
composed of multiple regions with distinct appearances. Unsupervised meth-
ods try to break the image into small regions that actually are i.i.d., but these
formulations do not involve any high-level segmentation of objects.
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Fig. 2. We iteratively propose new models by randomly sampling pixels from super-
labels, optimize the resulting two-level MRF, and re-estimate model parameters.

We propose a novel energy that unifies these two approaches by incorpo-
rating unsupervised learning into interactive segmentation. We show that this
more descriptive object model leads to better high-level segmentations. In our
formulation, each object (super-label) is automatically decomposed into spatially
coherent regions where each region is described by a distinct appearance model
(sub-label). This results in a two-level MRF with super-labels at the top level that
are partitioned into sub-labels at the bottom. Figure 1 illustrates the main idea.
We introduce the hierarchical Potts (hPotts) prior to govern spatial coherence
at both levels of our MRF. The hierarchical Potts prior regularizes boundaries
between objects (super-label transitions) differently from boundaries within each
object (sub-label transitions). The unsupervised aspect of our MRF allows ap-
pearance models of arbitrary complexity and would severely over-fit the image
data if left unregularized. We address this by incorporating global sparsity prior
into our MRF via the energetic concept of “label costs” [7].

Since our framework is based on multi-label MRFs, a natural choice of opti-
mization machinery is α-expansion [11, 7]. Furthermore, the number, class, and
parameters of each object’s appearance models are not known a priori — in order
to use powerful combinatorial techniques we must propose a finite set of possibil-
ities for α-expansion to select from. We therefore resort to an iterative graph-cut
process that involves random sampling to propose new models, α-expansion to
update the segmentation, and re-estimation to improve the current appearance
models. Figure 2 illustrates our algorithm.

The remainder of the paper is structured as follows. Section 2 discusses other
methods for modeling complex appearance, MDL-based segmentation, and re-
lated iterative graph-cut algorithms. Section 3 describes our energy-based formu-
lation and algorithm in formal detail. Section 4 shows applications in interactive
binary/multi-class segmentation and interactive co-segmentation; furthermore it
describes how our framework easily allows appearance models to come from a
mixture of classes (GMM, plane, etc.). Section 5 draws an interesting parallel
between our formulation and multi-class semi-supervised learning in general.

2 Related Work
Complex appearance models. The DDMCMC method [6] was the first to
emphasize the importance of representing object appearance with complex mod-
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els (e.g. splines and texture based models in addition to GMMs) in the context
of unsupervised segmentation. However, being unsupervised, DDMCMC does
not delineate objects but rather provides low-level segments along with their ap-
pearance models. Ours is the first multi-label graph-cut based framework that
can learn a mixture of such models for segmentation.

There is an interactive method [10] that decomposes objects into spatially
coherent sub-regions with distinct appearance models. However, the number of
sub-regions, their geometric interactions, and their corresponding appearance
models must be carefully designed for each object of interest. In contrast, we
automatically learn the number of sub-regions and their model parameters.

MDL-based segmentation. A number of works have shown that minimum
description length (MDL) is a useful regularizer for unsupervised segmenta-
tion, e.g. [5–7]. Our work stands out here in two main respects: our formulation
is designed for semi-supervised settings and explicitly weighs the benefit of each
appearance model against the ‘cost’ of its inherent complexity (e.g. number of
parameters). To the best of our knowledge, only the unsupervised DDMCMC [6]
method allows arbitrary complexity while explicitly penalizing it in a meaning-
ful way. However, they use a completely different optimization framework and,
being unsupervised, they do not delineate object boundaries.

Iterative graph-cuts. Several energy-based methods have employed EM-style
alternation between a graph-cut/α-expansion phase and a model re-estimation
phase, e.g. [12, 2, 13, 14, 7]. Like our work, Grab-Cut [2] is about interactive seg-
mentation, though their focus is binary segmentation with a bounding-box in-
teraction rather than scribbles. The bounding box is intuitive and effective for
many kinds of objects but often requires subsequent scribble-based interaction
for more precise control. Throughout this paper, we compare our method to
an iterative multi-label variant of Boykov-Jolly [1] that we call iBJ. Given user
scribbles, this baseline method maintains one GMM per object label and iterates
between α-expansion and re-estimating each model.

On an algorithmic level, the approach most closely related to ours is the unsu-
pervised method [14, 7] because it also involves random sampling, α-expansion,
and label costs. Our framework is designed to learn complex appearance mod-
els from partially-labeled data and differs from [14, 7] in the following respects:
(1) we make use of hard constraints and the current super-labeling to guide ran-
dom sampling, (2) our hierarchical Potts potentials regularize sub- and super-
labels differently, and (3), again, our label costs penalize models based on their
individual complexity rather than using uniform label costs.

3 Modeling Complex Appearance via Super-Labels

We begin by describing a novel multi-label energy that corresponds to our two-
level MRF. Unlike typical MRF-based segmentation methods, our actual set
of discrete labels (appearance models) is not precisely known beforehand and
we need to estimate both the number of unique models and their parameters.
Section 3.1 explains this energy formulation in detail, and Section 3.2 describes
our iterative algorithm for minimizing this energy.
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3.1 Problem Formulation
Let S denote the set of super-labels (scribble colors) available to the user and
let P denote the indexes of pixels in the input image I. By “scribbling” on
the image, the user interactively defines a partial labeling g : P → S ∪{none}
that assigns to each pixel p a super-label index gp ∈ S or leaves p unlabeled
(gp = none). Our objective in terms of optimization is to find the following:

1. an unknown set of L of distinct appearance models (sub-labels) generated
from the image, along with model parameters θ` for each ` ∈ L

2. a complete sub-labeling f :P →L that assigns one model to each pixel, and
3. a map π : L → S where π(`) = i associates sub-label ` with super-label i,

i.e. the sub-labels are grouped into disjoint subsets, one for each super-label;
any π defines a parent-child relation in what we call a two-level MRF.

Our output is therefore a tuple (L, θ, π, f) with set of sub-labels L, model pa-
rameters θ = {θ`}, super-label association π, and complete pixel labeling f . The
final segmentation presented to the user is simply (π ◦f) : P →S which assigns
a scribble color (super-label index) to each pixel in P.

In a good segmentation we expect the tuple (L, θ, π, f) to satisfy the following
three properties. First, the super-labeling π ◦ f must respect the constraints
imposed by user scribbles, i.e. if pixel p was scribbled then we require π(fp) = gp.
Second, the labeling f should exhibit spatial coherence both among sub-labels
and between super-labels. Finally, the set of sub-labels L should contain as many
appearance models as is justified by the image data, but no more.

We propose an energy for our two-level MRFs1 that satisfies these three
criteria and can be expressed in the following form2:

E(L, θ, π, f) =
∑

p∈P
Dp(fp) +

∑

pq∈N
wpqV (fp, fq) +

∑

`∈L
h`δ`(f) (1)

The unary terms D of our energy express negative log-likelihoods of appear-
ance models and enforce the hard constraints imposed by the user. A pixel p
that has been scribbled (gp ∈ S) is only allowed to be assigned a sub-label `
such that π(`) = gp. Un-scribbled pixels are permitted to take any sub-label.

Dp(`) =
{− ln Pr(Ip|θ`) if gp = none ∨ gp = π(`)

∞ otherwise (2)

The pairwise terms V are defined with respect to the current super-label map
π as follows:

V (`, `′) =





0 if ` = `′

c1 if ` 6= `′ and π(`) = π(`′)
c2 if π(`) 6= π(`′)

(3)

We call (3) a two-level Potts potential because it governs coherence on two levels:
c1 encourages sub-labels within each super-label to be spatially coherent, and
1 In practice we use non-uniform wpq and so, strictly speaking, (1) is a conditional

random field (CRF) [15] rather than an MRF.
2 The dependence of D on (π, θ) and of V on π is omitted in (1) for clarity.
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c2 encourages smoothness among super-labels. This potential is a special case of
our more general class of hierarchical Potts potentials introduced in Appendix 7,
but two-level Potts is sufficient for our interactive segmentation applications.
For image segmentation we assume c1 ≤ c2, though in general any V with
c1 ≤ 2c2 is still a metric [11] and can be optimized by α-expansion. Appendix 7
gives general conditions for hPotts to be metric. It is commonly known that
smoothness costs directly affect the expected length of the boundary and should
be scaled proportionally to the size of the image. Intuitively c2 should be larger
as it operates on the entire image as opposed to smaller regions that correspond
to objects. The weight wpq ≥ 0 of each pairwise term in (1) is computed from
local image gradients in the standard way (e.g. [1, 2]).

Finally, we incorporate a model-dependent “label costs” [7] to regularize the
number of unique models in L and their individual complexity. A label cost h`

is a global potential that penalizes the use of ` in labeling f through indicator
function δ`(f) = 1 ⇔ ∃fp = `. There are many possible ways to define the weight
h` of a label cost, such as Akaike information criterion (AIC) [16] or Bayesian
information critierion (BIC) [17]. We use a heuristic described in Section 4.2.

3.2 Our SUPERLABELSEG Algorithm
We propose a novel segmentation algorithm based on the iterative Pearl frame-
work [7]. Each iteration of Pearl has three main steps: propose candidate
models by random sampling, segment via α-expansion with label costs, and
re-estimate the model parameters for the current segmentation. Our algorithm
differs from [7] as follows: (1) we make use of hard constraints g and the current
super-labeling π ◦ f to guide random sampling, (2) our two-level Potts poten-
tials regularize sub- and super-labels differently, and (3) our label costs penalize
models based on their individual complexity rather than uniform penalty.

The proposal step repeatedly generates a new candidate model ` with param-
eters θ` fitted to a random subsample of pixels. Each model is proposed in the
context of a particular super-label i ∈ S, and so the random sample is selected
from the set of pixels Pi = { p |π(fp) = i } currently associated with i. Each
candidate ` is then added to the current label set L with super-label assignment
set to π(`) = i. A heuristic is used to determine a sufficient number of proposals
to cover the set of pixels Pi at each iteration.

Once we have candidate sub-labels for every object a näıve approach would
be to directly optimize our two-level MRF. However, being random, not all of an
object’s proposals are equally good for representing its appearance. For exam-
ple, a proposal from a small sample of pixels is likely to over-fit or mix statistics
(Figure 3, proposal 2). Such models are not characteristic of the object’s overall
appearance but are problematic because they may incidentally match some por-
tion of another object and lead to an erroneous super-label segmentation. Before
allowing sub-labels to compete over the entire image, we should do our best to
ensure that all appearance models within each object are relevant and accurate.

Given the complete set of proposals, we first re-learn the appearance of each
object i ∈ S. This is achieved by restricting our energy to pixels that are cur-
rently labeled with π(fp) = i and optimizing via α-expansion with label costs [7];
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GMM for 1

gray white

GMM for 3

gray white

GMM for 2

gray white

not an accurate appearance model for red scribble!not an accurate appearance model for red scribble!

Fig. 3. The object marked with red has two spatially-coherent appearances: pure gray,
and pure white. We can generate proposals for the red object from random patches
1–3. However, if we allow proposal 2 to remain associated with the red object, it may
incorrectly claim pixels from the blue object which actually does look like proposal 2.

this ensures that each object is represented by an accurate set of appearance
models. Once each object’s appearance has been re-learned, we allow the objects
to simultaneously compete for all image pixels while continuing to re-estimate
their parameters. Segmentation is performed on a two-level MRF defined by the
current (L, θ, π). Again, we use α-expansion with label costs to select a good
subset of appearance models and to partition the image. The pseudo-code below
describes our SuperLabelSeg algorithm.

SuperLabelSeg(g) where g : P → S ∪ {none} is a partial labeling

1 L = {} // empty label set with global f, π, θ undefined
2 Propose(g) // initialize L, π, θ from user scribbles
3 repeat
4 Segment(P,L) // segment entire image using all available labels L
5 Propose(π ◦f) // update L, π, θ from current super-labeling
6 until converged

Propose(z) where z : P → S ∪ {none}
1 for each i ∈ S
2 Pi = { p | zp = i } // set of pixels currently labeled with super-label i
3 repeat sufficiently
4 generate model ` with parameters θ` fitted to random sample from Pi

5 π(`) = i
6 L = L ∪ {`}
7 end
8 Li = { ` |π(`) = i }
9 Segment(Pi,Li) // optimize models and segmentation within super-label i

Segment(P̂, L̂) where P̂ ⊆ P and L̂ ⊆ L
1 let f |P̂ denote current global labeling f restricted to P̂
2 repeat

3 f |P̂ = argminf̂E(L̂, θ, π, f̂) // segment by α-expansion with label costs [7]

4 // where we optimize only on f̂ : P̂ → L̂
5 L= L \ { ` ∈ L̂ | δ`(f̂) = 0} // discard unused models

6 θ = argminθE(L̂, θ, π, f̂) // re-estimate each sub-model params

7 until converged



Interactive Segmentation with Super-Labels (in EMMCVPR 2011) 7���� ��������� �����	����
� ��� 	�	�	
�� ������ ��� �����
�	���
 ��� �����
�	���

Fig. 4. Binary segmentation examples. The second column shows our final sub-label
segmentation f where blues indicate foreground sub-labels and reds indicate back-
ground sub-labels. The third column is generated by sampling each Ip from model θfp .
The last two columns compare our super-label segmentation π ◦f and iBJ.

4 Applications and Experiments

Our experiments demonstrate the conceptual and qualitative improvement that
a two-level MRF can provide. We are only concerned with scribble-based MRF
segmentation, an important class of interactive methods. We use an iterative
variant of Boykov-Jolly [1] (iBJ) as a representative baseline because it is sim-
ple, popular, and exhibits a problem characteristic to a wide class of standard
methods. By using one appearance model per object, such methods implicitly
assume that pixels within each object are i.i.d. with respect to its model. How-
ever, this is rarely the case, as objects often have multiple distinct appearances
and exhibit strong spatial correlation among their pixels. The main message of
all the experiments is to show that by using multiple distinctive appearance
models per object we are able to reduce uncertainty near the boundaries of ob-
jects and thereby improve segmentation in difficult cases. We show applications
in interactive binary/multi-class segmentation and interactive co-segmentation.
Implementation details: In all our experiments we used publicly available
α-expansion code [11, 7, 4, 18]. Our non-optimized matlab implementation takes
on the order of one to three minutes depending on the size of the image, with
the majority of time spent on re-estimating the sub-model parameters. We used
the same within- and between- smoothness costs (c1 = 5, c2 = 10) in all binary,
multi-class and co-segmentation experiments. Our proposal step uses distance-
based sampling within each super-label whereby patches of diameter 3 to 5
are randomly selected. For re-estimating model parameters we use the Matlab
implementation of EM algorithm for GMMs and we use PCA for planes. We
regularize GMM covariance matrices to avoid overfitting in (L, a, b) color space
by adding constant value of 2.0 to the diagonal.

4.1 Binary Segmentation

For binary segmentation we assume that the user wishes to segment an object
from the background where the set of super-labels (scribble indexes) is defined
by S = {F,B}. In this specific case we found that most of the user interaction is
spent on removing disconnected false-positive object regions by scribbling over
them with background super-label. We therefore employ a simple heuristic: after
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Fig. 5. More binary segmentation results showing scribbles, sub-labelings, synthesized
images, and final cut-outs. ������� �������	 
���
Fig. 6. An image exhibiting gradual changes in color. Columns 2–4 show colors sampled
from the learned appearance models for iBJ, our two-level MRF restricted to GMMs
only, and ours with both GMMs and planes. Our framework can detect a mix of GMMs
(grass,clouds) and planes (sky) for the background super-label (top-right).

convergence we find foreground connected components that are not supported by
a scribble and modify their data-terms to prohibit those pixels from taking the
super-label F . We then perform one extra segmentation step to account for the
new constraints. We apply this heuristic in all our binary segmentation results for
both SuperLabelSeg and iBJ (Figures 4, 5, 6). Other heuristics could be easily
incorporated in our energy to encourage connectivity, e.g. star-convexity [19, 20].

In Figure 4, top-right, notice that iBJ does not incorporate the floor as part
of the background. This is because there is only a small proportion of floor pixels
in the red scribbles, but a large proportion of a similar color (roof) in the blue
scribbles. By relying directly on the color proportions in the scribbles, the learned
GMMs do not represent the actual appearance of the objects in the full image.
Therefore the ground is considered a priori more likely to be explained by the
(wrong) roof color than the precise floor color, giving an erroneous segmentation
despite the hard constraints. Our methods relies on spatial coherence of the
distinct appearances within each object and therefore has a sub-label that fits
the floor color tightly. This same phenomenon is even more evident in the bottom
row of Figure 5. In the iBJ case, the appearance model for the foreground mixes
the statistics from all scribbled pixels and is biased towards the most dominant
color. Our decomposition allows each appearance with spatial support (textured
fabric, face, hair) to have good representation in the composite foreground model.
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Fig. 7. Our algorithm detects complex mixtures of models, .
for example GMMs and planes. The appearance of the above .
object cannot be captured by GMMs alone.

4.2 Complex Appearance Models

In natural images objects often exhibit gradual change in hue, tone or shades.
Modeling an object with a single GMM in color space [1, 2] makes the implicit
assumption that appearance is piece-wise constant. In contrast, our framework
allows us to decompose an object into regions with distinct appearance models,
each from an arbitrary class (e.g. GMM, plane, quadratic, spline). Our algorithm
will choose automatically the most suitable class for each sub-label within an
object. Figure 6 (right) shows such an example where the background is decom-
posed into several grass regions, each modeled by a GMM in (L, a, b) color space,
and a sky region that is modeled by a plane3 in a 5-dimensional (x, y, L, a, b)
space. Note the gradual change in the sky color and how the clouds are segmented
as a separate ‘white’ GMM.

Figure 7 show a synthetic image, in which the foreground object breaks into
two sub-regions, each exhibiting a different type of gradual change in color. This
kind of object appearance cannot be captured by a mixture of GMM models.
In general our framework can incorporate a wide range of appearance models
as long as there exists a black-box algorithm for estimating the parameters θl,
which can be used at the line 6 of Segment. The importance of more complex
appearance models was proposed by DDMCMC [6] for unsupervised segmenta-
tion in a completely different algorithmic framework. Ours is the first multi-label
graph-cut based framework that can incorporate such models.

Because our appearance models may be arbitrarily complex, we must incor-
porate individual model complexity in our energy. Each label cost h` is computed
based on the number of parameters θ` and the number ν of pixels that are to
be labeled, namely h` = 1

2

√
ν |θ`|. We set ν = #{ p | gp 6= none } for line 2 of the

SuperLabelSeg algorithm and ν = |P| for lines 4,5. Penalizing complexity is
a crucial part of our framework because it helps our MRF-based models to avoid
over-fitting. Label costs balance the number of parameters required to describe
the models against the number of data points to which the models are fit. When
re-estimating the parameters of a GMM we allow the number of components to
increase or decrease if favored by the overall energy.

4.3 Multi-Class Segmentation

Interactive multi-class segmentation is a straight-forward application of our en-
ergy (1) where the set of super-labels S contains an index for each scribble color.

3 In color images a ‘plane’ is a 2-D linear subspace (a 2-flat) of a 5-D image space.
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Fig. 8. Multi-class segmentation examples. Again, we show the color-coded sub-
labelings and the learned appearance models. Our super-labels are decomposed into
spatially coherent regions with distinct appearance.

Figure 8 shows examples of images with multiple scribbles corresponding to mul-
tiple objects. The resulting sub-labelings show how objects are decomposed into
regions with distinct appearances. For example, in the top row, the basket is
decomposed into a highly-textured colorful region (4-component GMM) and a
more homogeneous region adjacent to it (2-component GMM). In the bottom
row, notice that the hair of children marked with blue was so weak in the iBJ ap-
pearance model that it was absorbed into the background. The synthesized im-
ages suggest the quality of the learned appearance models. Unlike the binary
case, here we do not apply the post-processing step enforcing connectivity.

4.4 Interactive Co-segmentation

Our two-level MRFs can be directly used for interactive co-segmentation [3, 21].
Specifically, we apply our method to co-segmentation of a collection of similar
images as in [3] because it is a natural scenario for many users. This differs from
‘unsupervised’ binary co-segmentation [8, 9] that assumes dissimilar backgrounds
and similar-sized foreground objects. Figure 9 shows a collection of four images
with similar content. Just by scribbling on one of the images our method is
able to correctly segment the objects. Note that the unmarked images contain
background colors not present in the scribbled image, yet our method was able
to detect these novel appearances and correctly segment the background into
sub-labels.

5 Discussion: Super-Labels as Semi-Supervised Learning

There are evident parallels between interactive segmentation and semi-supervised
learning, particularly among graph cut methods ([1] versus [22]) and random
walk methods ([23] versus [24]). An insightful paper by Duchenne et al. [25]
explicitly discusses this observation. Looking back at our energy and algorithm
from this perspective, it is clear that we actually do semi-supervised learning ap-
plied to image segmentation. For example, the grayscale image in Figure 7 can be
visualized as points in a 3D feature space where small subsets of points have been
labeled either blue or red. In addition to making ‘transductive’ inferences, our
algorithm automatically learned that the blue label is best decomposed into two
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Fig. 9. Interactive co-segmentation examples. Note that our method detected sub-
models for grass, water, and sand in the 1st and 3rd bear images; these appearances
were not present in the scribbled image.

linear subspaces (green & purple planes in Figure 7, right) whereas the red label
is best described by a single bi-modal GMM. The number, class, and parameters
of these models was not known a priori but was discovered by SuperLabelSeg.

Our two-level framework allows each object to be modeled with arbitrary
complexity but, crucially, we use spatial coherence (smooth costs) and label
costs to regularize the energy and thereby avoid over-fitting. Setting c1 < c2 in
our smooth costs V corresponds to a “two-level clustering assumption,” i.e. that
class clusters are better separated than the sub-clusters within each class. To
the best of our knowledge, we are first to suggest iterated random sampling
and α-expansion with label costs (SuperLabelSeg) as an algorithm for multi-
class semi-supervised learning. These observations are interesting and potentially
useful in the context of more general semi-supervised learning.

6 Conclusion

In this paper we raised the question of whether GMM/histograms are an appro-
priate choice for modeling object appearance. If GMMs and histograms are not
satisfying generative models for a natural image, they are equally unsatisfying
for modeling appearance of complex objects within the image.

To address this question we introduced a novel energy that models com-
plex appearance as a two-level MRF. Our energy incorporates both elements
of interactive segmentation and unsupervised learning. Interactions are used to
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provide high-level knowledge about objects in the image, whereas the unsuper-
vised component tries to learn the number, class and parameters of appearance
models within each object. We introduced the hierarchical Potts prior to regu-
larize smoothness within and between the objects in our two-level MRF, and we
use label costs to account for the individual complexity of appearance models.
Our experiments demonstrate the conceptual and qualitative improvement that
a two-level MRF can provide.

Finally, our energy and algorithm have interesting interpretations in terms of
semi-supervised learning. In particular, our energy-based framework can be ex-
tended in a straight-forward manner to handle general semi-supervised learning
with ambiguously-labeled data [26]. We leave this as future work.

7 Appendix — Hierarchical Potts

In this paper we use two-level Potts potentials where the smoothness is governed
by two coefficients, c1 and c2. This concept can be generalized to a hierarchical
Potts (hPotts) potential that is useful whenever there is a natural hierarchical
grouping of labels. For example, the recent work on hierarchical context [27]
learns a tree-structured grouping of the class labels for object detection; with
hPotts potentials it is also possible to learn pairwise interactions for segmenta-
tion with hierarchical context. We leave this as future work.

We now characterize our class of hPotts potentials and prove necessary and
sufficient conditions for them to be optimized by the α-expansion algorithm [11].
Let N = L∪S denote combined set of sub-labels and super-labels. A hierarchical
Potts prior V is defined with respect to an irreducible4 tree over node set N . The
parent-child relationship in the tree is determined by π :N →S where π(`) gives
the parent5 of `. The leaves of the tree are the sub-labels L and the interior nodes
are the super-labels S. Each node i ∈ S has an associated Potts coefficient ci for
penalizing sub-label transitions that cross from one sub-tree of i to another. An
hPotts potential is a special case of general pairwise potentials over L and can be
written as an |L|×|L| “smooth cost matrix” with entries V (`, `′). The coefficients
of this matrix are block-structured in a way that corresponds to some irreducible
tree. The example below shows an hPotts potential V and its corresponding tree.

0 c
1

c
5

c
1

0
0

c
5

0 c2 c
4c

2 0

c
4

0 c3
c
3 0

5

1

2 3

4

⇔

sub-labels L

super-labels S

α β γ

V(�, �′)

Let πn(`) denote n applications of the parent function as in π(· · ·π(`)). Let
lca(`, `′) denote the lowest common ancestor of ` and `′, i.e. lca(`, `′) = i where
4 A tree is irreducible if all its internal nodes have at least two children.
5 The root of the tree r ∈ S is assigned π(r) = r.



Interactive Segmentation with Super-Labels (in EMMCVPR 2011) 13

i = πn(`) = πm(`′) for minimal n,m. We can now define an hPotts potential as

V (`, `′) = clca(`,`′) (4)

where we assume V (`, `) = c` = 0 for each leaf ` ∈ L. For example, in the tree
illustrated above lca(α, β) is super-label 4 and so the smooth cost V (α, β) = c4.

Theorem 1. Let V be an hPotts potential with corresponding irreducible tree π.

V is metric on L ⇐⇒ ci ≤ 2cj for all j = πn(i). (5)

Proof. The metric constraint V (β, γ) ≤ V (α, γ) + V (β, α) is equivalent to

clca(β,γ) ≤ clca(α,γ) + clca(β,α) (6)

for all α, β, γ ∈ L. Because π defines a tree structure, for every α, β, γ there
exists i, j ∈ S such that, without loss of generality,

j = lca(α, γ) = lca(β, α), and

i = lca(β, γ) such that j = πk(i) for some k ≥ 0.
(7)

In other words there can be up to two unique lowest common ancestors among
(α, β, γ) and we assume ancestor i is in the sub-tree rooted at ancestor j, possibly
equal to j. For any particular (α, β, γ) and corresponding (i, j) inequality (6) is
equivalent to ci ≤ 2cj . Since π defines an irreducible tree, for each (i, j) there
must exist corresponding sub-labels (α, β, γ) for which (6) holds. It follows that
ci ≤ 2cj holds for all pairs j = πk(i) and completes the proof of (5). ¥
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