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Abstract

In [3] we showed that graph cuts can find hypersur-
faces of globally minimal length (or area) under any Rie-
mannian metric. Here we show that graph cuts on directed
regular grids can approximate a significantly more general
class of continuous non-symmetric metrics. Using submod-
ularity condition [1, 11], we obtain a tight characteriza-
tion of graph-representable metrics. Such “submodular”
metrics have an elegant geometric interpretation via hyper-
surface functionals combining length/area and flux. Prac-
tically speaking, we extend “geo-cuts” algorithm [3] to a
wider class of geometrically motivated hypersurface func-
tionals and show how to globally optimize any combination
of length/area and flux of a given vector field.

The concept of flux was recently introduced into com-
puter vision by [13] but it was mainly studied within vari-
ational framework so far. We are first to show that flux can
be integrated into graph cuts as well. Combining geometric
concepts of flux and length/area within the global optimiza-
tion framework of graph cuts allows principled discrete seg-
mentation models and advances the state of the art for the
graph cuts methods in vision. In particular, we address the
“shrinking” problem of graph cuts, improve segmentation
of long thin objects, and introduce useful shape constraints.

1. Introduction and Motivation

Graph cuts approach to problems in computer vision and
medical image analysis offers numerically robust global op-
timization in N-dimensional settings. Discrete graph-cuts
methods are easy to implement and their discrete framework
is sufficiently flexible to include various forms of regional,
boundary, or geometric constraints [2, 3]. Non-parametric
implicit representation of hypersurfaces via graph cuts
poses no restrictions on topological properties of segments.

Besides, underlying max-flow/min-cut optimization algo-
rithms run in seconds on 3D applications [4].

Until recently, one of the major criticism of graph cuts
was based on discrete metrication artifacts. Such criticism
was largely removed in [3] where we showed that metric
properties of cuts can approximate properties of continuous
space with any anisotropic Riemannian metric. The concept
of geometric length/area under image-based Riemannian
metric was extensively studied in segmentation within the
framework of geodesic active contours, level-sets, and more
recently graph cuts [3]. Introduction of geometrically mo-
tivated functionals into graph cuts reduces their metrication
artifacts and leads to more principled segmentation models.

The main goal of our current work is to find a geometric
interpretation for a general class of energy functionals that
graph cuts can minimize in segmentation. This research was
motivated by our understanding that minimization of Rie-
mannian length/area as in [3] does not reach the full poten-
tial of graph cuts. For example, it is well known that a cost
of ans/t cut on a directed graph depends on the cut’s “ori-
entation” (see Fig.1b). Indeed, the cut cost includes only
directed edges from thes side of the cut to itst side. Swap-
ping the terminalss andt can arbitrarily change the cost of
the cut as it would consist of different weights for reverse
edges. Normally, geometric (e.g. Riemannian) length/area
of a hypersurface does not depend on any specific orienta-
tion assigned to it. Therefore, length/area do not describe
all geometric properties of general cut metrics.

Flux optimization in image analysis:We found that the
concept of length/area has to be combined with the concept
of flux in order to get a complete geometric interpretation
for the general case of cut metrics on directed graphs. As-
suming any given field of vectorsv (e.g. image gradients
shown in Figure 1a), flux of that vector field through a given
continuous hypersurfaceS is

flux(S) =

∫

S

〈N,v〉dS

where〈, 〉 is (Euclidean) dot product andN are unit normals
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(a) oriented surface (b)s/t cut on directed graph

Figure 1. (a) Surface’s orientation, A or B, de-
termines the sign of flux. (b) Swapping the
terminals, s and t, changes the cost of a cut.

to surface elementsdS consistent with a given orientation.
Figure 1a shows two possibles orientations that can be as-
signed toS. If vectorsv are interpreted as a local speed in
a stream of water then the absolute value of flux equals the
volume of water passing through the hypersurface in a unit
of time. Surface’s orientation determines the sign of flux.

In fact, flux optimization has been previously considered
in image analysis by a number of researchers. Image seg-
mentation method in [8] uses minimum ratio cycle algo-
rithm to find a contour with the largest ratio of (image gra-
dient) flux and length. Global solution in [8] is limited to
2D contours. In a more general context, flux-based energy
was proposed in [13] where the corresponding gradient flow
equation was first derived. Practical effectiveness of flux
within variational framework (level-sets) was demonstrated
in medical image segmentation [13, 6] and in edge integra-
tion [9]. In particular, [13] showed that flux optimization
helps to segment narrow elongated structures like vessels.

To the best of our knowledge, we are the first to demon-
strate that flux can be integrated into the global optimiza-
tion framework of graph cuts. We show that the geometric
concept of flux allows more principled discrete graph-based
models and helps to address some practical limitations of
graph cuts methods in vision (e.g. “shrinking” problem).

At the same time, we argue here that flux alone has a lim-
ited surface regularization effect. Consider thedivergence
theoremfor differentiable vector fields

∮

S

〈N,v〉 dS =

∫

V

div v dV

whereV is the region enclosed insideS. It follows that seg-
mentation based on global maximization of flux is equiva-
lent to thresholding all points where the field’s divergence

div v =
∂vx

∂x
+

∂vy

∂y

is positive. In practice, this implies that flux may have to
be combined with additional surface regularization criteria,
e.g. geometric length of the segment boundary.

The divergence theorem also reveals a simple way for
integrating flux optimization into graph cuts in case of dif-
ferentiable vector fieldv. If we can computediv v then
maximization of flux over surfaceS can be replaced by
maximization of divergence over its interior. Divergence
gives us aregional bias at each pixel which can be easily
incorporated into graph cut framework usingt-links [2].

One may argue that practical accuracy of estimating flux
via divergence theorem may strongly depend on an exact fil-
ter used for estimating divergence. In practice, differentia-
bility of v may be questionable as well. Later in this paper
we avoid any use of the divergence theorem. A class of di-
rected graph constructions for flux optimization is obtained
in Section 5 as a simple consequence of our theories that
do not explicitly rely on differentiability ofv. Not surpris-
ingly, there is strong consistency with the ideas presentedin
the previous paragraph. We show that all our constructions
can be (equivalently) converted to undirected graphs with
certain t-links whose weights may be interpreted as specific
finite difference schemes for divergence.

Summary of contributions: One of our major contri-
butions is a complete geometric interpretation of discrete
cut metrics on directed regular grids via standard contin-
uous concepts of length/area and flux. We obtain a tight
characterization of a class of continuous metrics that can be
approximated by graph cuts. The result follows from sub-
modularity of graph-representable binary energies [1, 11].
General cut metrics form a subclass of Finsler metrics1 with
asymmetric distance maps (see Fig.2c).

We show that graph-representable (submodular) metrics
are in one-to-one correspondence with continuous hyper-
surface functionals combining geometric length with re-
spect to any convex symmetric metric (e.g. Riemannian)
and flux with respect to any given vector field. Our results
are constructive. We explain how to build a regular grid
where discrete cut metric approximates any such hypersur-
face functional. Minimum cut on this grid corresponds to a
hypersurface with a globally optimal sum of length and flux.
While global minimization of Riemannian length/area was
covered in our earlier work [3], we provide an alternative
method that applies to a slightly wider class of convex sym-
metric metrics. Incorporating flux optimization into graph
cuts is one of the major practical contribution of this paper.

Technically speaking, this paper concentrates on theoret-
ical characterization of the class of cut metrics for 2D grids.
Nevertheless, all presented general concepts (e.g. Finsler
metric, flux, length) extend to 3D and we conjecture that our
main theoretical results can be proved in higher dimensions.
All practical aspects of our work regarding global optimiza-
tion of geometrically motivated functionals (length/areaand
flux) via graph cuts apply to the general N-D setting.

1For example, Finsler metric is used in Physics to describe the propa-
gation of light in an inhomogeneous anisotropic medium.
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Related work: Basic ideas introduced in [2, 3] work as
a foundation for our work. We use implicit representation
of continuous hypersurfaces via binary labeling of interior
and exterior nodes on regular grids as in [3]. Presentation
of the material may assume that the reader is familiar with
the main ideas on how regional and boundary cues and hard
constraints can be integrated within graph cuts [2].

A very recent work in [10] offers somewhat complemen-
tary approach where continuous hypersurfaces are explic-
itly represented by facets obtained by slicing space with a
large number of lines/planes. Formed cells are used as irreg-
ularly connected graph nodes. This theoretically interest-
ing construction allows global optimization of a fairly gen-
eral continuous functionals. Explicit surface representation
makes it easy to see that flux and geometric length/area can
be encoded. Complete characterization of the correspond-
ing metric properties is an interesting open question.

Organization of the paper: Section 2 is essential for the
structure of the paper. It explains our basic mathematical
approach and links general ideas and contributions outlined
above with more detailed Sections 3 and 4 where neces-
sary technical results are proved. Section 5 provides imple-
mentational details for building regular grids where discrete
cut metrics approximate any specified “submodular” met-
ric. This construction allows to compute globally optimal
surfaces for any given functional combining geometric (e.g.
Riemannian) length/area and flux with respect to any given
vector field. Section 6 shows promising segmentation re-
sults combining image-based Riemannian length/area and
flux-based functionals. We show that integrating flux into
graph cuts helps to address the “shrinking” problem, to im-
prove segmentation of long thin objects, and to introduce
useful shape constraints.

2. Theoretical Framework in 2D

One of our theoretical goals is to characterize a class of
continuous metrics that can be approximated by discrete
cut metrics on regular grids. It turns out that such graph-
representable (“submodular”) metrics form a subclass of
Finsler metrics. In general, Finsler metric is specified by
a smooth non-negative Lagrangian functionLp(τ) ≥ 0 de-
scribing length of vectorτ in a local neighborhood (tangent
space) of pointp. It is assumed thatLp(t · τ) = t · Lp(τ)
for any t ≥ 0. For fixedp, hypersurfaceLp(τ) = 1 de-
scribes a local distance map visualizing metric propertiesof
space near pointp. Figure 2 shows some examples of local
distance maps of Finsler metric, including Euclidean and
Riemannian metrics as special cases.

In general, local distance mapsLp(τ) = 1 should be
convex but they do not have to be centrally symmetric. In-
deed, Finsler metric allowsLp(τ) 6= Lp(−τ). Unlike stan-
dard Riemannian geometry, a given path betweenA andB

Figure 2. Local distance maps

may have two different Finsler lengths

∫ B

A

Ls(τs)ds, (τs -path’s tangent vector)

depending on whether the path is followed fromA to B or
the other way around. In other words, Finsler length of a
contour depends on orientation assigned to it. This property
is analogous to “directedness” ofs/t cuts (Fig. 1b). It sug-
gests that the class of Finsler metrics is sufficiently rich to
describe geometric properties of cut metrics.

In Section 3.2 we derive a system of linear equations that
relates edge weights on a regular grid to the corresponding
cut metric’s functionL. Then, Section 4 characterizes all
graph-representable metrics as functionsL for which there
aresubmodularedge weights solutions [1, 11].

Our general characterization of graph-representable (or
submodular) metrics is based on breaking function

Lp(τ) = L+
p (τ) + L−

p (τ)

into symmetric and antisymmetric parts (see Section 3.4).
Section 4 shows that metricLp(τ) is submodular if and only
if distance maps of its symmetric part,L+

p (τ) = 1, are con-
vex for allp and if its antisymmetric part is harmonic

L−
p (τ) = 〈τ⊥,vp〉

where symbol⊥ implies counter clockwise rotation by90
degrees, andvp is some vector defined at each locationp.

It follows that Finsler length under general submodular
metric can be represented by two terms

∫ B

A

Ls(τs)ds =

∫ B

A

L+
s (τs)ds +

∫ B

A

〈τ⊥
s ,vs〉ds

The first term (symmetric part of a cut metric) gives “stan-
dard” geometric length of the contour which is independent
of its orientation2. The second term (antisymmetric part of
a cut metric) is equal toflux of a given vector field{vp}
through the contour.

2Note that anisotropic Riemannian metricL
+
p (τ) =

√

τT Dpτ used
in [3] is only one feasible example of symmetric part of a cut metric.
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(a) Neighborhood system (b) Cut metric distance map

Figure 3. Edges on a regular 2D grid graph

3. Preliminaries

In this section we introduce our terminology for regular
2D grids and derive equations that form the basis for study-
ing cut metrics in Section 4. We assume that all nodes are
embedded inR2 in a regular grid-like fashion with cells of
size δ. We also assume that all nodes have topologically
identical neighborhood systems. One example of a neigh-
borhood system is shown in Figure 3(a).

Neighborhood system of a regular gridG can be de-
scribed by a set of directed edgesNG = {ek : 1 ≤ k ≤
2n}. We will assume that vectorsek are enumerated in
the increasing order of their angular orientationαk so that
0 ≤ α1 < α2 < ... < αn < π andαi+n = αi + π for
1 ≤ i ≤ n. We also assume thatek is the shortest length
vector connecting two grid nodes in the given directionαk.

Symbolw̃ will denote edge weights. In particular,w̃k(p)
will be the weight of directed edgeek at pixelp. Since our
goal is graph-based approximation of continuous metrics as
the grid gets arbitrarily fineδ → 0, we can assume that
edge weights (and the corresponding cut metric) are homo-
geneous in small enough regions of the grid. In this case,
w̃k(q) = w̃k(p) for all nodes/pixelsq sufficiently close top
and we will simply writew̃k to denote weights of all edges
with orientationαk in a small homogeneous region around
some assumed pixelp.

3.1 Local Distance Maps for Cut Metric

Approximation of Riemannian metric on graphs was
studied in [3] using integral geometry. In contrast, we use
linear algebra to study the general case of discrete cut met-
rics. The results in [3] can be obtained as a special case.

Our major starting point is a system of linear equations
describing local distance maps of a discrete cut metric. As
mentioned earlier, local properties of a cut metric will be
studied by concentrating on sufficiently small homogeneous
regions of the grid. Equations for local distance maps of a
symmetric cut metric were first derived in [3] in order to
visualize these maps for a given set of edge weights. In

(a) Contour Orientation (b)k-th family of edges

Figure 4.

fact, our approach is to solve for edge weights directly from
such distance map equations. Below, we generalize these
equations to the case of directed edgesek.

Consider vectorτ of angular orientationϕ in a given ho-
mogeneous region. According to Figure 4(b), the number
of intersections betweenτ and a family of edgesek is

nk(τ) =
|τ | · | sin(αk − ϕ)|

∆ρk

=
|τ | · |ek| · | sin(αk − ϕ)|

δ2

where∆ρk = δ2/|ek| is the distance between two lines
of edgesek. We would like to estimate the cost of graph
edges thatτ severs assuming that it is a part of a hyper-
surface cutting the graph. Since the graph is directed, ori-
entation of the hypersurface (cut) does matter. Throughout
this paper we assign orientation to graph partitioning hyper-
surfaces (contours in 2D) as illustrated in Figure 4(a); we
consider thesourcecomponent of a cut to be an object seg-
ment and set the clockwise direction to be the orientation of
the object boundary. Thus, the object (source component)
is always “on the right” of vectorτ when it is a part of an
oriented cutting hypersurface. Then,τ severs edgeek only
if sin(αk −ϕ) > 0. Weighted sum of intersections between
τ and all families of severed directed edges gives the cut
metric length ofτ

|τ |G = |τ | ·
2n
∑

k=1

wk · sin(αk − ϕ)+ (1)

where we use “normalized” weightwk = |ek|
δ2 w̃k. Equation

(1) relates cut metric length|τ |G with graph’s edge weights.
Figure 3(b) shows one example of a cut metric’s local

distance map which can be obtained as a solution of equa-
tion |τ |G = 1. It is easy to check that this map is a poly-
gon with exactly one vertex per edgeek in the neighbor-
hood system. Such vertices are aligned with the directions
of edges. As shown later, such polygons must be convex.

3.2 From Metric to Edge Weights

We would like to find edge weightswk such that cut
metric length|τ |G approximates given Finsler metricL(τ).
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This problem can be slightly simplified since both cut met-
ric (1) and Finsler metricL(·) are homogeneous functions
of degree one, i.e.|t · τ |G = t · |τ |G andL(t · τ) = t · L(τ)
for any scalart > 0. Introducing unit vectorsuϕ =
[cosϕ sin ϕ]T at anglesϕ, the problem is that their cut
metric length|uϕ|G should approximate their given Finsler
metric length

g(ϕ) := L(uϕ)

In general, it is not always possible to find graphG such
that equality|uϕ|G = g(ϕ) holds for all anglesϕ since the
distance map of any cut metric is a polygon (Figure 3(b)).
Instead, we will require that this equality holds for a given
finite set of directionsϕ ∈ [0, 2π]. In particular, we choose
anglesϕ = αk corresponding to orientations of edges in the
neighborhood systemNG = {ek : 1 ≤ k ≤ 2n}. Then, (1)
yields a system of linear equations for edge weightswk:

2n
∑

k=1

wk · sin(αk − αi)
+ = gi (2)

wheregi := g(αi) = L(ui) andui := uαi
= ei

|ei|
. There

are2n equations (1 ≤ i ≤ 2n) and2n variableswk.
Section 4 characterizes graph-representable metricsg

such that (2) yields feasible edge weightswk. In the next
subsection we explain what edge weights are “feasible”.

3.3 Submodular Edge Weights

It is well-known that graph cut/max flow algorithm can
be applied only if edge weights in a graph are non-negative.
This places some restriction on metricsg that graph cuts
can handle. At the first glance, it may seem that we need
equation 2 to have a non-negative solutionw. However, we
argue that in some cases it is possible to use graph cuts even
if some componentswk are negative. Indeed, consider edge
ek connecting pixelsp andq (1 ≤ k ≤ n). We pay some
penalty only ifp andq are given different segmentation la-
belsxp andxq . This penalty isw̃k if xp = 0, xq = 1, and
w̃k+n if xp = 1, xq = 0. Therefore, edge(p, q) adds the
following pairwise termVpq(xp, xq) to the functional that
we minimize:

Vpq(0, 0) Vpq(0, 1)
Vpq(1, 0) Vpq(1, 1)

=
0 w̃k

w̃k+n 0

It is known (see e.g. [1, 11]) that termVpq can be handled
by a broad class of graph constructions if and only if this
term issubmodular, i.e. the sum of diagonal elements is
the same or smaller than the sum of off-diagonal elements3.
This motivates the following definition.

3If one of the weights is negative (for examplẽwk), butw̃k +w̃k+n ≥

0, then the graph is constructed as follows [11]: we add edges(source →

p), (q → p), (p → sink) with non-negative weights so that their com-
bined effect is the same as that of edges(p → q) and (q → p) with
weightsw̃k andw̃k+n, respectively.

Definition 3.1. Edge weight vector{wk} is calledsubmod-
ular if wk + wk+n ≥ 0 for any indexk ∈ [1, n].

Thus, the question what metrics can be approximated via
geo-cuts reduces to the following central questions:

• For whichg equation (2) has a solution?

• For whichg equation (2) has a submodular solution?

An answer to these questions is the main technical contri-
bution of the paper. Our solution in presented in Section 4.

3.4 Symmetric and Antisymmetric Parts

To characterize cut metrics and to solve for edge weights
we decompose vectors{gi}, {wk} into symmetric and anti-
symmetric parts. Below we explain basic properties of such
decompositions and introduce some notation that is used
throughout the paper.

We will work with 2n × 1 vectorsf = {fk} whose ele-
ments correspond to fixed discrete anglesα1, . . . , α2n. It is
convenient to extend such vectors and angles periodically,
i.e. definefi+2nk = fi, αi+2nk = αi for 1 ≤ i ≤ 2n,
k ∈ Z.

We say thatf is symmetric iffi = fi+n, and antisym-
metric if fi = −fi+n. Note that any periodic vectorf can
be split uniquely into symmetric and antisymmetric parts
f = f+ + f− wheref+ andf− are determined as follows:

f+

i = 1

2
[fi + fi+n]

f−
i = 1

2
[fi − fi+n]

The submodularity condition for a periodic edge weight
vector{wk} can then be reformulated as follows:

Lemma 3.2. Vector{wk} is submodular iffw+

k ≥ 0 for
anyk.

4 Characterization of Submodular Metrics

Two theorems below provide complete characterization
of cut metrics from discrete formulation (2) by answering
two fundamental questions posted in Section 3.3. Although
vectorg = {gi} was introduced under the assumption that
it corresponds to some Finsler metric, in this section we
remove this restriction and consider arbitrary vectorsg.

Theorem 4.1. Equation (2) has a solution if and only if
antisymmetric partg− = {g−i } is harmonic, i.e. there exists
vectorv such thatg−i = 〈ui

⊥,v〉 for anyi.

Proof. Equation (2) can be rewritten as

Kw = g (3)



Proceedings of “International Conference on Computer Vision” (ICCV), Beijing, China, October 2005 vol. I, p.569

whereK is 2n× 2n matrix with entries

Kij = sin(αj − αi)
+

It can be seen thatK maps symmetric (antisymmetric) vec-
torw to symmetric (antisymmetric) vectorg = Kw. There-
fore, system (3) is equivalent to two independent equations
(subject to constraints thatw+ is symmetric andw− is an-
tisymmetric):

Kw+ = g+ (4a)

Kw− = g− (4b)

Consider2n × 2n matrixD with entries

Dii = −
sin(αi+1 − αi−1)

sin(αi+1 − αi) sin(αi − αi−1)

Dij =
1

| sin(αj − αi)|
if j − i = ±1 mod 2n

Dij = 0 for all other entries

It can be seen that

DK = KD =

[

In In

In In

]

whereIn is n × n identity matrix. Therefore, multiplying
equation (4a) byD on the left we obtain

w+ =
1

2
Dg+ (5)

Conversely, substitutingw+ into equation (4a) we obtain an
identity. Thus, equation (4a) has unique symmetric solution
given by formula (5).

Consider the second equation. We will periodically ex-
tend matrixK asKi+2nk,j+2nl = Kij . Then the LHS can
be rewritten as

[Kw−]i =

n
∑

j=1

Kijw
−
j +

2n
∑

j=n+1

Kijw
−
j =

=

n
∑

j=1

[Kij − Ki,j+n]w−
j =

n
∑

j=1

〈ui
⊥,uj〉w

−
j = 〈ui

⊥,v〉

where we used bilinear form〈a⊥, b〉 = axby − aybx and

v :=
∑n

j=1
ujw

−
j (6)

Therefore, the antisymmetric partg− must be harmonic if
equation (4b) has an antisymmetric solution. Conversely, if
g− is harmonic (g−i = 〈ui

⊥,v〉) then it is easy to construct
solutionw− of equation (4b): we just need to choose anti-
symmetric vectorw− which satisfies equality (6). (Ifn = 2,
thenw− is unique, otherwise there are many solutions).

Theorem 4.2.Suppose that antisymmetric part ofg = {gi}
is harmonic, i.e.g−i = 〈ui

⊥,v〉 for some vectorv. Then

(1) Equation (2) has a submodular solutionw if and only
if

Dg+ ≥ 0 (7)

(2) Condition (7) implies that vectorg+ is non-negative.

(3) If vectorg+ is strictly positive, then condition (7) is
equivalent to convexity of the distance map forg+.

Proof. Part (1) is a direct consequence theorem 4.1. Indeed,
submodularity is equivalent to the conditionw+ ≥ 0, which
by formula (5) is equivalent to condition (7).

Let us prove part (2). We will do it by assuming that
c = mini g+

i < 0 and deriving a contradiction.
Without loss of generality we can assume that this min-

imum is achieved ati = 0. Thus, we haveg+

0 = g+
n = c.

Consider vector

hi =
g+

i − c/2

sin(αi − α0)
, 0 < i < n

Let us definek = argmax0<i<n hi andA = hk. Now
consider vectorH defined as follows:

Hi = g+

i − c/2 − A sin(αi − α0) , i ∈ Z

We haveHk = 0 andHi ≤ 0 for any 0 ≤ i ≤ n. This
implies that[DH ]k ≤ 0. Therefore,

[Dg+]k = [DH ]k + [Dk,k−1 + Dkk + Dk,k+1] · c/2 < 0

We get a contradiction, which proves part (2).
We now assume thatg+ is strictly positive. Then we

can consider the distance map ofg+, i.e. the polygon with
verticesA1, . . . , A2n whereAi is vertex(αi, 1/g+

i ) in polar

coordinates:
−→

OAi=
1

g+

i

ui. We denoteri = |
−→

OAi | = 1

g+

i

.

Let us prove that conditionw+ = 1

2
Dg+ ≥ 0 is equiv-

alent to the condition that the distance map is convex. For
eachk ∈ Z we can write

w+

k =
1

2
[Dk,k−1g

+

k−1
+ Dkkg+

k + Dk,k+1g
+

k+1
] =

= c · [ 1

2
rkrk+1 sin(αk+1 − αk)

− 1

2
rk−1rk+1 sin(αk+1 − αk−1)

+ 1

2
rk−1rk sin(αk − αk−1) ]

where

c =
g+

k−1
g+

k g+

k+1

sin(αk − αk−1) sin(αk+1 − αk)
> 0

The three terms inside parentheses areArea(OAk−1Ak),
−Area(OAk−1Ak+1), Area(OAkAk+1), respec-
tively (see Fig. 5). Therefore, their sum equals
Area(Ak−1AkAk+1) which is taken with positive
sign if Ak andO are at different sides of lineAk−1Ak+1,
and with negative sign otherwise. This proves the desired
result.
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Figure 5. Illustration for the proof that Dg+ ≥ 0

is equivalent to convexity of the distance map for
strictly positive vector g+.

5. Summary of Graph Constructions

Theorems 4.1 and 4.2 gave a precise characterization of
submodularmetrics, i.e. vectorsg = {gi}, for which equa-
tion (2) has a submodular solution. Here we summarize how
to compute edge weights for anyg at pixelp assuming that it
is submodular. We discuss graph implementations of sym-
metric and antisymmetric parts ofg = g+ + g− separately
because they correspond to conceptually different geomet-
ric functionals (length/area and flux) and because edges for
each part can be combined (added) on a graph.

Length in 2D: Symmetric partg+ of a general submod-
ular metric should be convex. This part of the metric corre-
sponds to cut’s geometric length. To implement any given
g+ we compute vectorw+ according to formula (5) and set
the weight of edgeek originating fromp asw̃+

k = δ2

|ek|
w+

k

for 1 ≤ k ≤ 2n.
Area in 3D: The general result for convex symmetric

part g+ of an arbitrary submodular metric applies to 2D
grids only. In order to integrate geometric area into graph
cuts in case of 3D grids, it is possible to use n-link construc-
tion given in our earlier work [3] assuming that the symmet-
ric part of the metric is Riemannian. We conjecture that it
might be possible to construct 3D grids that integrate area
with respect to any convex symmetric metric. Theories in
Sections 2, 3, and 4 would have to be generalized to 3D.

Flux in ND: Antisymmetric partg−i = 〈ui
⊥,v〉 of a

general submodular metric at pixelp is defined by a given
vectorv. This part of the metric corresponds to flux of vec-
tor fieldv over a cut. Our construction allows optimization
of flux with respect to any vector field and applies to grids
of arbitrary dimensions.

Assume that N-D grid’s neighborhood system is given by
vectorse1, . . . , e2n such thatek+n = −ek for 1 ≤ k ≤ n.
Equation (6) suggests that vectorv should be decomposed
into a sum of vectors parallel to edgesek and find coeffi-

cientsw−
1 , . . . , w−

n such that

∑n

k=1
w−

k uk = v (8)

We setw−
k+n := −w−

k for 1 ≤ k ≤ n and compute unnor-

malized weights̃w−
k = δd

|ek|
w−

k whered is space dimension.

For each edgeek connecting pixelp to its neighborqk

we should add directed n-links(p → qk) and (qk → p)
with weightsw̃−

k andw̃−
k+n, respectively. Note that one of

these edge weights is negative. Normally, the graph may
already have some non-negative weights assigned to its n-
links based on symmetric partg+ of the metric. If the com-
bination of weights fromg+ and some negative weights for
g− is positive at each n-link then we have a valid graph con-
struction. This directed graph construction will work for
some combinations ofg+ andg− but it will put restrictions
on the magnitude of vectorv definingg−.

In case of an arbitrary vector field, we can use construc-
tion in [11] that allows to implement any submodular n-
links. We havew̃−

k + w̃−
k+n = 0, therefore n-links(p → qk)

and(qk → p) above are submodular for any vector fields.
The construction in [11] usest-links, i.e. edges to the ter-
minals (sources and sinkt). If w̃−

k < 0 then we add edges
(s → p) and(qk → t) with weight− 1

2
w̃−

k , otherwise we
add edges(p → t) and(s → qk) with weight 1

2
w̃−

k . (Co-
efficient 1

2
is necessary in order to avoid double counting -

both pixelsp andqk contribute to the costs).
The implementation of flux via t-links seems consistent

with the divergence theorem approach explained in Sec-
tion 1 even though here we used completely different prin-
ciples. In particular, we obtain specific weights for t-links
based on a decomposition of vectorv in equation (8) and
not from a direct computation of divergence of the vector
field at pixelp. There are many decompositions ofv and
any specific one may lead to different t-links whose weights
can be interpreted as a specific estimate of divergence.

Indeed, consider one specific example of decomposing
vectorv along grid edges using a natural choice of n-links
oriented along the main axes. In 2D, for example, we have
v = vxux + vyuy whereux anduy are unit vectors in
X and Y direction. It is easy to check that this choice of
decomposition (8) leads to t-link weights

tp =
δ2

2

[

(vright
x − vleft

x ) + (vup
y − vdown

y )
]

(9)

wherevright
x is the X-component of vectorv taken at the

right neighbor of pixelp and all other terms are defined
similarly. We add edge(s → p) with weight−tp if tp < 0,
or edge(p → t) with weighttp otherwise. Obviously, equa-
tion (9) is a particular finite difference scheme for comput-
ing divergence of vector fieldv.
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(a) Vessels and aneurism (b) Heart extraction

Figure 6. 3D experimental results

(a) From prior shape(s) (b) From a center line

Figure 7. Shape constraints using flux

6. Experimental Results

In general, flux is a good counter-balance to length/area.
Flux causes stretching while length/area causes shrinking.
Specific applications may need to balance them correctly.

Figure 6(a) demonstrates segmentation of a long vessel
with an aneurism. We use graph-representable surface func-
tional based on a weighted combination of image gradients
flux and image-based Riemannian area. Note that function-
als using only area may cut short any elongated structures
due to “shrinking”: a short expensive boundary may (ag-
gregatively) cost less than a very long cheap one. The diver-
gence theorem explains why flux helps to avoid this prob-
lem in the context of global optimization via graph cuts.
Divergence of image gradients is positive right inside the
object boundary and negative right outside of it. Therefore,
we have regional t-links all along the vessel boundary help-
ing to avoid shrinking. Flux sensitivity to orientation also
helps the vessel’s segment to avoid sticking to the wrong
boundary even though the gradients on a spine near by are
stronger than those on the vessel. Presence of length/area in
the functional helps to add regularity.

We also discuss a novel way of using flux for a shape
constraint. Models using distance maps for shape priors
are popular [12, 7, 5]. Our shape constraint for N-D im-
age segmentation uses flux of distance map gradients. Two
examples of such vector fields are shown in Figure 7. The
gradients are for a signed distance map from a given prior
shape (dotted line) or from a center line. The magnitude
of vectors could be reduced with a distance from a shape.
A vector field could be also obtained (learned) as a sum of

normals of training shapes that pass through pointp. We
propose the the following submodular “shape functional”

∮

S

(L+(τs) − 〈N,v〉) dS

where the second term encourages the surface normals to
align with the largest vectors in the field and the first term
attempts to regularize via (e.g. Euclidean) length. The min-
ima of this functional (zero) is achieved exactly at the prior
shape and it is non-negative elsewhere. Example in Fig-
ure 6(b) shows the whole heart extracted from a 3D volume
using shape functional above. The vector field was obtained
from a center point provided. Without the shape prior, seg-
mentation of the heart as a whole is problematic as the 3D
data of heart contains many internal structures with high
image gradients. Note that our shape constraint have a rea-
sonable degree of scale invariance.
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