
In International Conference on Computer Vision (ICCV), Kyoto, Japan, October 2009 1

Globally Optimal Segmentation of Multi-Region Objects
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Figure 1. Our simplest motivating example. Standard binary [3, 22] and multi-label [5, 24] models fail because object/background
colours are hard to separate. In the absence of user localization, above at center is the best result we can expect from such models.
Now we can design multi-region models with geometric interactions to segment such objects more robustly in a single graph cut.

Abstract

Many objects contain spatially distinct regions, each
with a unique colour/texture model. Mixture models ignore
the spatial distribution of colours within an object, and thus
cannot distinguish between coherent parts versus randomly
distributed colours. We show how to encode geometric in-
teractions between distinct region+boundary models, such
as regions being interior/exterior to each other along with
preferred distances between their boundaries. With a single
graph cut, our method extracts only those multi-region ob-
jects that satisfy such a combined model. We show applica-
tions in medical segmentation and scene layout estimation.
Unlike Li et al. [17] we do not need “domain unwrapping”
nor do we have topological limits on shapes.

1. Introduction
State-of-the-art segmentation methods benefit from an

appearance model of the object’s interior and its boundary.
Such methods include active contours, level sets, graph cuts,
and random walker. With binary segmentation, the object’s
entire appearance must be incorporated into a single mixed
model. Most real-world objects are better described by a
combination of regions with distinct appearance models,
and attempts to use multi-label segmentation reflect this,
e.g. [9, 24]. Our new multi-region segmentation framework
maintains a separate region+boundary model for each part
of an object, and allows these parts to interact spatially.

Figure 1 shows the most basic type of object that we can
deal with effectively, and suggests the main advantage we
have over standard binary or Pott’s-like models.

Our work is a few short steps from a number of existing
techniques either from a conceptual or technical point of
view. For example, what we call a multi-region model is
ultimately a multi-label model, though we add simple yet
important geometric constraints and then optimize with a
single graph cut1. To help make our contribution clear, we
begin by situating our work relative to other methods.

Pictorial structures. We briefly juxtapose our work with
the well-known pictorial structures [6], not because our
work is directly related, but because we address an anal-
ogous problem for objects of a completely different sort.
Like their work, our models guarantee optimality only un-
der certain conditions. The table below contrasts our works.

pictorial struct. [6] this work

shape of each part fixed template arbitrary region

spatial prior relative part positions boundary distances

optimization dynamic programming single graph cut

optimum guaranteed if tree connectivity if no “frustrated cycles”

Here “arbitrary region” means that each region does not
itself have a specific preferred shape. Such part models can
be good, or very bad, depending on the application. One
can think of this work as introducing basic distance priors
between shapes in a globally optimal way, though incorpo-
rating shape priors [29] themselves could be powerful.

1Our ideas may also apply in other optimization settings, e.g. [1, 20].
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Figure 2. To segment an image, Li et al. [17] must work within a
band that already follows the object’s rough shape by estimating
from a center-line/point. They then ‘unwrap’ the band into polar
coordinates because their construction (Figure 3) requires it.

Multi-label segmentation. Our multi-region models are,
generally speaking, a type of multi-label model. One super-
ficial distinction is that an n-region model potentially has 2n

corresponding labels. The reason will be apparent from our
graph construction, and we discuss a related idea called log
transformation [21] toward the end of the paper.

Our first contribution, stated in terms of multi-label mod-
els, is to introduce priors on the distance between pairs of
discontinuities (or “region boundaries” as we call them).
This is achieved by certain long-range interactions between
pixels, and stands in contrast to Pott’s or random walk mod-
els, applied for example in [24] and [9] respectively.

Second, multi-label models often require approximate
methods such as α-expansion [5]. We strive for an intuitive
characterization of the conditions under which our models
can be optimized by a single graph cut. A fully general
characterization of when multi-label global optima are guar-
anteed [25] does not have a meaningful interpretation for
specific problems. Elegant interpretations do exist for spe-
cial cases however, such as Ishikawa’s convex characteri-
zation [11]. Rather than testing multi-label models against
abstract criteria [21, 25], we describe one way to design
easy-to-optimize models in an intuitive piecewise manner.

Optimal nested surfaces. The multi-surface segmentation
method of Li, Wu, Chen & Sonka [17] is actually what in-
spired our work. The main drawback of their method is
that it is hard to use on anything except cylindrical objects;
topological changes, bifurcations, or even strong curvature
all require careful pre-segmentation. Figure 2 shows the un-
derlying problem: their need to unwrap the image domain.

They start by assuming that a center-point (center-line)
of an object in 2D (3D) is given. After casting outward
rays and unwrapping them to obtain a polar representation
of the image, they can segment multiple nested surfaces
along the resulting columns. They model the segmentation
as a closure set problem on a special graph, but our Fig-
ure 3 suggests an equivalent s-tmin cut construction for the
simplest case. They can encode a minimum and maximum
distance constraint between consecutive surfaces. This all
assumes that each surface intersects each ray at only one lo-
cation. Their construction should also allow for soft spring-
like forces, although they do not state this.
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Figure 3. LEFT: s-t min cut construction corresponding to [17];
any cut must separate top row from bottom row. RIGHT: Basic
idea from [17]. Each column separates top from bottom at two
distinct locations, one forced to be strictly above the other.

Our graph construction sidesteps the unwrapping issue
entirely. We do not need center-lines, have no topologi-
cal constraints, and do not suffer from geometric distortion
introduced by unwrapping. Briefly, our construction repre-
sents a multi-region object by a directed graph comprising
an unordered set of layers, with one layer per region. Each
layer has one vertex per image pixel2. Each layer by itself
is just an independent binary graph cut problem familiar in
binary segmentation [3]. We introduce inter-layer arcs in
the graph that give effects analogous to [17] yet are easier
to implement and useful in more general settings.

The paper is organized as follows. Section 2 introduces
our multi-region segmentation framework, describing our
energy, geometric interaction terms, and our regional terms.
Section 3 demonstrates two applications: medical segmen-
tation and scene layout estimation. Certain combinations of
geometric interactions cannot be optimized by graph cuts,
and Section 4 discusses ways to handle these cases. Sec-
tion 5 concludes and suggests further applications.

2. Our Multi-Region Framework
We begin by describing three intuitive geometric inter-

actions in their simplest form:

Containment. Region B must be inside region A, per-
haps with repulsion force between boundaries.

Exclusion. Regions A and B cannot overlap at any pixel,
perhaps with repulsion force between boundaries.

Attraction. Penalize the area A − B, exterior to B, by
some cost α > 0 per unit area. Thus A will prefer not
to grow too far beyond the boundary of Y .

As suggested above, we can introduce a distance prior
between region boundaries in the form of a hard or soft
margin. The prior is enforced in the graph construction
by an inter-layer neighbourhood at each pixel p. The local

2This assumption serves to make our notation more bearable. In gen-
eral, the layers may represent an image at different resolution, matching
the scale at which the corresponding part’s features appear in the data.
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Figure 4. LEFT: Mixed colour model corresponding to Figure 1.
RIGHT: Two-region model corresponding to the final result in Fig-
ure 1. Trabecular bone (B) is forced to be inside a band of compact
bone (A) of some estimated thickness.

weight and shape for this neighbourhood can vary at each
pixel. Figure 4 shows how these interactions combine to
add discriminative power to object models in segmentation.
In other words, these interactions combine to help fight the
camouflage problem.

2.1. Multi-Region Energy

We define P to be the set of pixel indices and L to be the
set of region indices. Our binary variables are x ∈ BL×P
which we index as xip over pixels p ∈ P and over regions
i ∈ L. The set L is not ordered. For now we interpret
xip = 1 to mean that pixel p is interior to region i. The
notation xp denotes a vector of all variables that correspond
to pixel p, one for each of the |L| regions. If xp = 0 then
pixel p is considered “background.”

To express our multi-region energy, we start with two
familiar components: data terms and regularization terms.
Each pixel p has associated function Dp that defines a cost
for every combination of regions. Each region i is regu-
larized independently in a standard way by a collection of
smoothness terms V i defined as

V i(xi) =
∑
pq∈N i

V ipq(x
i
p,x

i
q) (1)

where each neighbourhood N i typically defines nearest-
neighbour grid connectivity.

Ideally each data cost Dp(xp) could be arbitrary but, be-
cause Dp is a function of |L| binary variables, graph cuts
requires that Dp be submodular [15]. Ramifications of this
are discussed in Section 2.3. Each V i plays the the same
surface-regularization role as in standard binary segmenta-
tion. For the case |L|=1 our Dp and V i obviously describe
a standard binary energy, solvable by graph cut [3].

When L indexes multiple regions, we can add a new cat-
egory of energy terms to encode inter-region interactions.
Our multi-region energy takes the overall form

E(x) =
∑
p∈P

Dp(xp) +
∑
i∈L

V i(xi) +

interaction terms︷ ︸︸ ︷∑
i,j∈L
i6=j

W ij(xi,xj). (2)

where eachW ij encodes all geometric interactions between
regions i and j.

∞ α
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N ij

∞ α
i
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cut B

A

Figure 5. LEFT: Graph construction for region layers i, j ∈ L
showing a subset of inter-region connectivity N ij . The ∞-cost
arcs, shown emanating only from xp

j , enforce a 1-pixel margin
between region boundaries. RIGHT: The α-cost arcs attract the
outer boundary by penalizing only the area A−B.

To understand how our interaction terms W ij are in-
dexed over both region pairs (i, j) and pixel pairs (p, q),
it helps to consider Figure 5 along with the definition for
one particular pair of regions

W ij(xi,xj) =
∑

pq∈N ij

W ij
pq(x

i
p,x

j
q). (3)

The inter-region neighbourhood N ij is the set of all pixels
pairs (p, q) at which region i is assigned some geometric
interaction with region j. We allow (p, p) ∈ N ij because
they refer to separate variables, unlike inN i. Note thatW ii

and V i would describe the same set of energy terms, but the
conceptual distinction is just as important as the distinction
between Vpp and Dp.

Section 2.2 details the energy terms and corresponding
graph construction for our containment, exclusion, and at-
traction interactions. Section 2.3 then discusses limitations
of our higher-order data terms.

2.2. Geometric Interactions
We now describe how our geometric interactions can be

implemented with a single graph cut. The basic “i con-
tains j” interaction is simplest, so we start there. All we do
is introduce a term W ij

pp(0, 1) = ∞ at every pixel p ∈ P .
Those familiar with graph constructions may prefer to think
of it as an∞-cost arc from vertex xjp to xip, thus prohibiting
any cut that labels them 1 and 0 respectively. More gener-
ally we can add similar terms W ij

pq for p 6= q. For example,
to add a hard uniform margin to our containment constraint,
we set W ij

pq(0, 1) =∞ for all q within some radius of p.
The tables below list energy terms corresponding to our

three main interactions.
i contains j

xi
p xj

q W ij
pq

0 0 0
0 1 ∞
1 0 0
1 1 0

i excludes j

xi
p xj

q W ij
pq

0 0 0
0 1 0
1 0 0
1 1 ∞

i attracts j

xi
p xj

p W ij
pp

0 0 0
0 1 0
1 0 α
1 1 0

(4)

Figure 5 shows the graph construction corresponding to
the containment and attraction interactions. A soft contain-
ment cost W ij

pq(0, 1) > 0 for p 6= q creates a spring-like re-
pulsion force between the inner and outer boundaries. Note
that our distinction between “containment” and “attraction”



In International Conference on Computer Vision (ICCV), Kyoto, Japan, October 2009 4

is largely artificial since they are the same type of constraint
but with opposite orientation.

The exclusion interaction is more difficult because it can-
not be optimized by graph cuts until we perform a sim-
ple transformation. The reason is because graph cuts can
only optimize certain submodular functions [15]. A func-
tionE(x) over binary x is submodular if it can be expressed
as a sum of pairwise functions Eij(xi,xj) that each satisfy

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0). (5)

Our containment and attraction interactions are submodu-
lar, but for our exclusion terms W ij in (4) clearly the re-
verse inequality holds, so exclusion is supermodular. Be-
cause exclusion is everywhere supermodular, we can flip
the meaning of layer j’s variables so that xjp = 0 designates
the region’s interior. Our exclusion terms W ij(xi, x̄j) thus
become submodular, so long as we can flip the variables.

The idea of flipping variable meanings among super-
modular terms is not a new idea. It lies at the heart of roof-
duality methods in quadratic pseudo-boolean optimization
(QPBO) [2, 14, 23]. These methods are more sophisticated
than graph cuts, consuming more time and memory, so we
prefer not to rely on them unless necessary (Section 4).

Let us now explore the overall geometric interactions
permitted by combining the three basic ones in (4). To aid
the discussion, we introduce graphical depictions of each
interaction between two objects i and j.

i j
contains

(submodular)

i j
excludes

(supermodular)

i j
attracts

(submodular)

We can allow more sophisticated interactions, such as a
hierarchy of nested regions or regions excluded from one
another. The example below models two mutually exclu-
sive regions, each with an interior part. A black circle in-
dicates that the region’s label is complemented in order for
the overall problem to remain submodular.






object interaction

contains

excludes







⇒
contains





(6)

There are many useful interactions that we cannot model
with graph cuts. The example below describes two mutually
exclusive regions, both contained within another region.





non-submodular 

object interaction

contains

excludes



 
⇒

contains


object interactionexcludes (7)

The above configuration cannot be trivially converted to a
submodular energy. It introduces what is called a frustrated
cycle among the overall pairwise energy terms. A cycle
is called frustrated if it contains an odd number of non-
submodular terms (see P3,P4 in [23]). This means that

with graph cuts we can only model interactions that are bi-
partite with respect to exclusion, and submodular interac-
tions cannot be added between layers that use opposite 0/1
labels. If we step outside these constraints then global op-
tima are no longer guaranteed, but approximations such as
QPBO-I [23] or αβ-swap [5] may still be effective. (Sec-
tion 4 explains why α-expansion often cannot be applied.)

2.3. Regional Data Terms
We begin by showing how the likelihoods in Figure 4

are used to drive the segmentation in Figure 1. We have
L = {A,B} so each data term Dp defines up to 4 costs.
Given image data I , each function Dp is described by the
table below.

xA
p xB

p Dp

0 0 − log Pr(Bg|Ip)
0 1 K
1 0 − log Pr(A|Ip)
1 1 − log Pr(B|Ip)

(8)

The unspecified costK brings us to an important point. The
cost K is not driven by the image data itself, because the
“A contains B” object model prohibits this configuration.
For this particular model, each Dp(xp) is added alongside
pairwise term WAB

pp having cost WAB
pp (0, 1) = ∞. The

three likelihoods (8) can therefore be arbitrary for this ob-
ject model, without concern for K or for submodularity.
Submodularity of our overall energy (2) thus depends on
a combination of data terms and interaction terms.

Suppose however that there were no geometric con-
straints between two layers i and j. The data terms Dp(xp)
must then be submodular (or supermodular if the label for j
is flipped). To understand what this means intuitively, con-
sider two regions i and j that represent subtractive colours.

i j

1 0 1 1 0 10 0 cyan
yellowgreen

I

(9)

Here, submodularity requires that each data term satisfy

Dp(0, 0) +Dp(1, 1) ≤ Dp(0, 1) +Dp(1, 0). (10)

One symmetric way to satisfy (10) is to say, for example,
that Dp for a cyan pixel Ip does not simply encourage re-
gion i, but also discourages region j by an equal amount.

For models with strong geometric interactions, such as
containment and exclusion, these constraints onDp are usu-
ally satisfied for reasons suggested by (8).

Higher-order data terms. Dp may model three or more
regions with dependent data costs, but graph cuts can only
encode pairwise energy terms directly. Any function of
three or more variables can be transformed into a combi-
nation of pairwise and unary terms in polynomial time [2].
Transforming a submodular 3rd-order term preserves sub-
modularity among the resulting pairwise terms [15]. For a
4th-order term or higher there are submodularity-preserving
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Figure 6. Scene layout estimation. Given a scene (a) we first gener-
ate data terms from local surface class confidences given by Hoiem
et al. [10]. The maximum likelihood solution is shown in (b).
With a single graph cut, our multi-region framework regularizes
noise/gaps in the data (c) while keeping most important geometric
classes (B,L, T,R, F ) mutually exclusive throughout the image.

transformations only for certain cases [7, 30]. To solve
the resulting pairwise problem with a single graph cut, one
must truncate the non-submodular data terms to approxi-
mate the desired energy. (None of our medical examples
needed truncation.) An alternative is to use QPBO [2] and
its extensions [23] directly on the non-submodular energy.

3. Applications
We choose two problems that we hope demonstrate the

diverse applications of our framework. Section 3.1 shows
how our multi-region energy (2) helps to model many ob-
jects in medical image segmentation. Section 3.2 proposes a
novel way to regularize basic scene layout estimation using
Hoiem-style3 data terms [10].

3.1. Medical Segmentation
Medical image segmentation is a domain full of multi-

part objects that are hard to detect with rigid part-models
such as [6]. This is why so many state-of-the-art algorithms
[1, 3, 9, 17] rely on region+boundary models over arbitrary
shapes using mainly length/area priors. Of these techniques,
only the recent work of Li, Wu, Chen & Sonka [17] attempts
to globally optimize priors on the distance between multiple
surfaces. As shown in Figures 2 and 3, they rely on accu-
rate center-line estimation (a difficult problem in itself) and
cannot handle complex topologies.

Figures 1, 8, 9 and 10 show experimental results of our
multi-region framework using class-specific models (bone,
knee, heart, kidney). The heart result was computed using
QPBO-I, and the rest were computed in a single graph cut.
Our early experiments are all 2D but they extend to N-D in
a straight-forward manner. Using the Boykov-Kolmogorov
max-flow algorithm [4] our running times are longer than
binary graph cut in roughly linear proportion to the number
of vertices and arcs added to the graph.

3 We thank Derek Hoiem so, so much for making code [10] available.
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Figure 7. Our scene object interactions and corresponding higher-
order data terms. Two unwanted labels are due to limitations im-
posed by frustrated cycles (Section 2.2). The configurations not
listed have cost ≥ ∞ due to the four exclusion constraints above.

3.2. Scene Layout Estimation

Given a photograph of a scene, we wish to break the im-
age into rough geometric labels “bottom” (B), “top” (T ),
“left wall” (L), ”right wall” (R) and “front-facing” (F ).
This application is described by Hoiem et al. [10], and we
actually use data terms based on their local geometric class
estimators. See Figure 6 for an example result. Instead of
using α-expansion to find a local minimum of a Pott’s en-
ergy, we design a set of interactions between class regions
that can be optimized by a single graph cut.

In our setup, we let regions L = {B,L, T,R} and treat
F as background. Ideally we want every pixel p ∈ P to be
assigned a unique region, but adding this constraint intro-
duces frustrated cycles (Section 2.2). We propose the subset
of interactions and data terms portrayed in Figure 7.

To encourage the “box” layout seen in Figure 7 we bor-
row an idea from [18] and bias region B against cutting un-
derneath itself using length terms V B , and likewise for ori-
entations L, T,R. Unlike [18] we do this with a soft penalty
so that strong local data terms can override the prior, such
as the front-facing sign in Figure 6c.

We still have two unwanted configurations BT and LR
that have no corresponding likelihood. To discourage these
labels we want to maximize corresponding Dp, but higher-
order submodularity requires

Dp(BT ) ≤ Dp(B) +Dp(T )−Dp(F ), and
Dp(LR) ≤ Dp(L) +Dp(R)−Dp(F ). (11)

We truncate these terms to retain submodularity, potentially
allowing either B to overlap T , or L to overlap R. Experi-
mental results are shown in Figure 11.

Note that even if we did prohibit labels BT and LR, we
would not be minimizing a Pott’s energy. Instead, the equiv-
alent multi-label formulation has labelsL = {l∅, l1, . . . , ln}
where we designate l∅ the null label, corresponding to re-
gion F in our scene layout formulation. In this type of
multi-label model, all pixel label pairs fp, fq 6= l∅ have

Vpq(fp, fq) = Vpq(fp, l∅) + Vpq(l∅, fq). (12)

Because this model always penalizes (li, lj) transitions
more than (li, l∅) transitions, over-smoothing creates gaps
between li and lj in regions with weak data, unlike [10, 18].
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Figure 8. User-driven segmentation of knee joint, measuring thick-
ness of cartilage. Above uses the 4-part submodular interaction
portrayed in (6), and was computed by a single graph cut. Given
the user seeds, bone and cartilage are segmented automatically us-
ing a combination of image gradients and anisotropic distance prior
(margin) between surfaces. A two-part model, using these same
seeds for either tibia or femur, gives poor results.

Figure 9. User-driven heart segmentation using the non-
submodular interaction portrayed in (7), solved by QPBO-I. The
user first adds seeds to mark the right ventricle (a), but the sampled
colour model is attracted to both ventricles. The user then marks
the left ventricle as a separate region (b). The outer wall is seg-
mented automatically by compromising between image gradients
and distance prior (margin). This cannot be done by Li et al. [17].

Figure 10. Kidney segmentation (a) is very difficult to automate due to low contrast and complex topology. Binary graph cuts simply
cannot get reasonable results without heavy user interaction, and even multi-label methods need some form of localization [24, 9]. In (b–c)
we model the kidney as medulla surrounded by a slightly brighter cortex of minimum thickness. On this challenging example our method
is very sensitive to colour/geometric parameters, e.g. (b), but has discriminative power to extract only the correct object (c) without any
localization. We also show an alternate 3-region object model (d) that eliminates the unwanted margin between medulla and collection
cavity (dark/bright interior). This kind of topology would be impossible to segment using Li et al. [17] due to the unwrapping requirement.

Figure 11. Scene layout results using our proposed interactions in Section 3.2, showing estimates for indoor (a) and outdoor (b–d) scenes.
Smoothness parameters were tuned for each image. Diagonal shading on the Flatiron image (d) indicates that scene classes L and R
overlap. This may happen when certain data terms conflict because our graph cut construction cannot simultaneously prohibit all classes
from overlapping. Section 4 discusses ways to resolve this. See Figure 6b for an example of the data terms that drive this segmentation.
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Figure 12. Example of how our interaction terms cause αβ-swap
to get stuck in local minima. The graph and Dp encode a 4-pixel
segmentation with “A contains B” constraint. Diagonal arcs en-
courage a 1-pixel margin between boundaries of B and A. Our
s-t min cut construction finds global optimum f∗= (B,B,A, ∅)
with E(f∗) = 0, but the corresponding 3-label energy is hard for
αβ-swap to optimize. The initial labeling fp =∅ is already a local
minimum regardless of which labels are swapped (table at right).

4. Discussion

Given one of our multi-region models, one could apply
αβ-swap to the corresponding multi-label energy. Unfortu-
nately this provides no optimality guarantees, and Figure 12
suggests how our distance priors create local minima for
αβ-swap. Often the α-expansion algorithm cannot even be
applied because the equivalent multi-label energy is not a
metric [5] and would create non-submodular terms at the
expansion step. Specifically, let Vpq(fp, fq) denote the pair-
wise cost corresponding to Figure 12. The costs here do not
satisfy the triangle inequality because

Vpq(B, ∅) � Vpq(B,A) +Vpq(A, ∅). (13)

The Pott’s-like model suggested by (12) is a metric, how-
ever, and can be optimized effectively with α-expansion.
On the few scene layout examples we tried, α-expansion
either found or came close to the global optimum.

Multi-label constructions. Recall that our set of regions L
is not ordered in any way. We are thus not building a ‘layer
cake’ construction typical of discrete and continuous total-
variation methods in multi-label optimization [11, 19, 20].
A special case of our multi-region energy (2) does coincide
with a particular Ishikawa construction [11]. To construct a
total-variation (Vpq ∝ |fp−fq|) Ishikawa graph for n labels,
order n−1 regions asL = {1, . . . , n−1} and introduce hard
“i contains i+ 1” constraints between subsequent layers.

Also recall that an n-region model represents up to 2n

corresponding labels, which is the ultimate objective of the
log transformation [21]. They start with an energy over dis-
crete variables xi ∈ {1 . . .m} and try to represent each xi
using as close to log2m binary variables as possible. Their
approach is much more general because they start from a
multi-label energy and test it against a criterion for transfor-
mation to submodular binary encoding. The criterion itself
is clear but it is not always obvious how to satisfy it when
designing an energy for a particular application. In contrast,
we start with binary variables and build up our multi-region

models from intuitive pairwise interactions. We show that
there are applications where such models are useful, with-
out the need for an explicit transformation from multi-label.

Constructions along ‘rays’. On page 2 we described a
related construction by Li, Wu, Chen & Sonka [17] that
optimizes along columns sampled from the image domain.
Notice that because their columns are known a priori they
can encode both a min and max distance prior, whereas our
framework assumes rays are not known and can only en-
code a min distance4. Thus there is an advantage to their
method when a good pre-segmentation is available.

On the subject of paper [17], we mention two connec-
tions between their work and existing works in vision. First,
it is standard to convert their closure set problem into an
equivalent s-t min cut, and we note that the correspond-
ing min cut graph in their single-surface case happens to
be a particular Ishikawa construction [11]. Their innova-
tion can be thought of as building parallel Ishikawa con-
structions that influence one another. Second, there is a bi-
nary segmentation paper [27] that takes similar advantage
of rays embedded in the image domain. Rather than un-
wrap the image domain and introduce geometric distortion
of length/area, Veksler discretizes the rays and embeds them
directly in the neighbourhood of a grid graph. One could
implement multi-surface priors like Li et al. by extending
Veksler’s grid framework instead.

QPBO and approximations. There are many multi-region
models that are useful yet contain frustrated cycles. Even
the simple 3-region interaction portrayed in (7) and the
scene layout application are two examples where the ideal
set of interactions cannot be optimized with a single graph
cut. We can still formulate the (potentially NP-hard) en-
ergy and apply global methods like QPBO-P [2] or a rea-
sonably fast approximation like QPBO-I [23]. QPBO-I can
give good results on examples like Figures 9 and 11d, in
only 1–5 subsequent ‘improve’ attempts.

Given a model that contains frustrated cycles among re-
gion layers, it may also be possible to design move-making
algorithms that operate on subsets of regions. This is in
the spirit of “range-moves” [16, 26] where at each itera-
tion we choose a large subset of interactions that can be
trivially converted to submodular. Care must be taken to
ensure that the energy of the labeling never increases, but
application-specific moves can be developed in this way.
For example, we have verified that we can implement the
vertical/horizontal moves in [18] using a simple “L ex-
cludes R” construction with special Dp and V i based on
the current labeling.

4In our framework, it is actually possible to create a spring-like attrac-
tion force between boundaries of i and j via opposing “i attracts j” and
“j attracts i” interactions of large radius. However, the strength of this at-
traction is unfortunately coupled with surface regularization strength, lead-
ing to unwanted oversmoothing for most applications.
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5. Conclusions and Future Work
With our multi-region framework, not only can more dif-

ficult objects now be segmented, but designing tractable
models is also quite easy. The main ideas were to keep
a separate appearance model for each spatially distinct re-
gion, and to allow geometric priors between region bound-
aries. Along the way, we discussed many parallels between
the works of Li et al. [17], Ishikawa [11] and Veksler [27],
and we hope these comments were helpful. Our experi-
ments suggest that more robust medical segmentation tools
could be designed around these ideas.

There are many other applications that can potential be
revisited with these ideas in mind. Particularly promising
are a more sophisticated concept of shape priors [8, 29]
and topological constraints [28], but also ratio minimiza-
tion [13], EM-style algorithms like Grab-Cuts [22], and
combining pictorial structures with segmentation [6, 12].
Complex objects can be modeled by a hierarchy of nested
regions that interact, with each region potentially driven by
different data.

Finally, we note that there has been much past success
in transferring ideas from discrete optimization into contin-
uous settings, e.g. [20]. We hypothesize that some of the
ideas discussed in this paper may also apply in continuous
settings.
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