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Abstract

Binary energy optimization is a popular approach for
segmenting an image into foreground/background regions.
To model region appearance, color, a relatively high di-
mensional feature, should be handled effectively. A full
color histogram is usually too sparse to be reliable. One
approach is to reduce dimensionality by color space clus-
tering. Another popular approach is to fit GMMs for soft
color space clustering. These approaches work well when
the foreground/background are sufficiently distinct. In cases
of more subtle difference in appearance, both approaches
may reduce or even eliminate foreground/background dis-
tinction. This happens because either color clustering is
performed completely independently from segmentation, as
a preprocessing step (in clustering), or independently for
the foreground and independently for the background (in
GMM). We propose to make clustering an integral part
of segmentation, by including a new clustering term in
the energy. Our energy favors clusterings that make fore-
ground/background appearance more distinct. Exact opti-
mization is not feasible, therefore we develop an approxi-
mate algorithm. We show the advantage of including the
color clustering term into the energy function on camou-
flage images, as well as standard segmentation datasets.

1. Introduction

Optimization of binary energy is a common approach
for segmenting an image into foreground/background re-
gions [3, 14, 2, 18, 11, 10, 15, 17]. Most segmenta-
tion functions include an appearance term to model fore-
ground/background, and a smoothness term to encourage
smooth boundaries. Here we focus on appearance models.

We are interested in the case when appearance models
are not known in advance, but rather must be estimated
from the image to be segmented, like in the GrabCut frame-
work [14, 2]. The appearance parameters have to be esti-
mated together with segmentation, making the problem NP-

Figure 1. Top: original image with the initialization box in red.
The star object has two distinct colors: o1 and o2, and the stripy
background has distinct colors b1 and b2. Colors o1 and b1 (in
orange spectrum) are similar. Bottom: (a) initial GMM fit with
one component for the foreground and background. Blue and
red dots show background and foreground colors, respectively.
Background color b1 fits the foreground model better, leading
to a segmentation failure in (d); (c) kmeans clusters colors into
{o1, o2, b1} and {b2}. This makes o1 and b1 indistinguishable,
causing a segmentation failure in (e). Right: we find an adaptive
clustering into two components that keeps initial foreground col-
ors (inside red box) and background colors (outside red box) in
separate clusters.

hard [2], in contrast to the case of known appearance [3],
To estimate appearance models, one initializes with a

rough segmentation, usually a box. The foreground is esti-
mated from the inside and the background from the outside



box. Using the estimated models, the image is segmented
with [3], which for fixed appearance models gives an opti-
mal segmentation. Model estimation and segmentation are
repeated until convergence to a local minimum [2].

Color is a popular feature for segmentation. There are
various approaches for handling color, a relatively high di-
mensional feature. The simplest approach is to compute a
full histogram (normalized), like it is done for gray scale
images in [4]. Despite high dimensionality, this can be im-
plemented efficiently with a hash table. However, full color
histogram is likely to be sparse and unreliable.

To obtain a smaller size histogram with more reliable
bin counts, one can cluster the color space into clusters (or
bins) [18]. When the color space is partitioned evenly, this
is usually referred to as quantization and the resulting cells
are referred to as bins. When the color space is partitioned
irregularly, this is usually called clustering and the result-
ing “cells” are called clusters. In this paper, we use the
terms quantization and clustering interchangeably. An ad-
vantage of this approach is that the histogram of optimal fit
to a given segment can be computed exactly [18] in linear
time, making this approach particularly efficient.

Color space partitioning is performed as a pre-processing
step, completely independently from the segmentation pro-
cess. Clearly, some color clusterings enhance the ob-
ject/foreground difference, while other clusterings reduce
it. Consider a simple illustration in Fig. 1. The top shows
an image with the initialization box in red1. The star fore-
ground object has two distinct orange colors, o1 and o2. The
striped background region has distinct colors b1, which is
close to o1, and b2, which is far from all the other colors.

Suppose that we choose to cluster color space into two
clusters. Kmeans (Fig. 1(b)) produces clusters {o1, o2, b1}
and {b2}, since b2 is far away from all the other colors.
This clustering makes the foreground star region completely
indistinguishable from the background stripes of color b1,
leading to a segmentation failure shown in Fig. 1(e). A clus-
tering that maintains a good foreground/background sepa-
ration of the initial segmentation (i.e. the box) does exist,
namely {o1, o2} and {b1, b2}. However, this clustering is
somewhat worse according to the kmeans objective func-
tion, and is impossible to find without considering the clus-
tering objective function together with image segmentation.

Another popular approach that copes with high-
dimensionality of color is to use mixtures of Gaussian mod-
els (GMM), first proposed in [14]. Even though it is in-
tractable to find an optimal GMM model that best fits a
given segmentation, GMM modeling works quite well if the
foreground/background appearance are sufficiently distinct.

1Unlike the original framework in [14], in this example we do not hard-
constrain the outside of the box to be the background. This assumes that
the user roughly centers the box around the object of interest, not neces-
sarily ensuring that all the foreground fits inside the box.

However, it has problems for more subtle cases, sometimes
referred to as “camouflage”. Consider Fig. 1 again. We use
GMM with one component for foreground and one for the
background2. The initial GMM fit is in Fig. 1(a). The red
Gaussian is for the foreground and the blue one for the back-
ground. The background color b1 has a higher probability
under the foreground GMM, and therefore at the first itera-
tion, all pixels of color b1 are assigned to the foreground.
This leads to a segmentation failure, see Fig. 1(d). The
problem is that at the model refitting stage, the foreground
and background are treated independently from each other.
The foreground GMM is a good model for a large part of the
background, because the background was never considered
when fitting the foreground.

To address the disconnect between the clustering and
segmentation steps, we propose to include a color clustering
term into the energy function, making it an integral part of
the segmentation process. Thus our approach jointly opti-
mizes over color clustering, foreground/background appear-
ance models, and the segmentation boundary.

Our energy is designed to encourage a color clustering
that makes the foreground and background regions more
distinct from each other. Consider Fig. 1 again. We start
with the same clustering into two components as kmeans,
see Fig. 1(b). However, under clustering in (b), the initial
foreground/background segmentation, given by the red box,
is not likely (i.e. data term for the background pixels is
high). We search for a new clustering that makes the initial
segmentation more likely. The result of this ’adaptive’ clus-
tering is in Fig. 1(c). Under the appearance resulting from
Fig. 1(c), the initial red box segmentation is more likely.
When we segment the image, we get the result in Fig. 1(f).

Our intuition is derived from [18, 17], where they pro-
vide an interesting interpretation of the energy function that
is used for jointly optimizing the appearance and segmen-
tation terms. However, the approaches in [18, 17] assume
that the color space has been quantized beforehand. Fur-
thermore, the goals in these papers are different from ours.
The main goal in [18] is to develop a dual decomposition
approach for joint optimization of the appearance and seg-
mentation that is able to find a global optimum in some
instances. The goal in [17] is a tractable (not NP-hard)
appearance based algorithm. To achieve it they replace
the non-tractable volume-balancing term with application-
dependent unary (tractable) terms.

We base our color clustering term on the kmeans objec-
tive function [8]. Our aim is to find a clustering that leads
to histograms which better separate the foreground region
from the background. This is, of course, the chicken and
egg problem, since segmentation of the foreground is our
goal in the first place. We design a stepwise approach where

2Technically, one component GMM is just a Gaussian. We use a simple
image for illustration. However, all arguments transfer to the general case.



we first optimize the appearance together with clustering,
and then appearance with segmentation, in a way that guar-
antees not to increase the energy. For the first step we de-
velop a new optimization scheme that combines the stan-
dard kmeans algorithm with the swap moves from [5]. We
call this novel algorithm swap-kmeans. The second step is
the same problem as in [2], and is solved in the same way.

We validate our approach on camouflage images, as well
as standard segmentation datasets with ground truth.

2. Energy Function
We now formulate and motivate our energy function.

2.1. Appearance and Color Clustering

We first describe the appearance and color clustering
terms and discuss how they interact. Our new clustering
term is based on the kmeans objective function and we add it
to the standard segmentation energy [3, 2]. The appearance
model is based on normalized histograms, like in [3, 18].

Let p be an image pixel and P the set of all image pixels.
Let c be a color occurring in the image, and C the set of all
distinct image colors3. Let cp be the color of pixel p.

We seek to partition the set of all colors C into k clusters.
Let clusters be indexed with integers {1, 2, ..., k}. For each
c ∈ C, a clustering variable yc ∈ {1, 2, ..., k} denotes the
cluster of color c. We will refer to vector y as the clustering.

Given a color clustering y, let Pi(y) be the set of pixels
whose colors are assigned to cluster i. That is

Pi(y) = {p ∈ P|ycp = i}.

We compute the center of each cluster i as:

µi(y) =
1

|Pi(y)|
∑

p∈Pi(y)

cp,

where | · | stands for the size of a set.
Our kmeans-based clustering energy term is:

Ec(y) =
∑
p∈P

||cp − µycp
||2. (1)

This term encourages similar colors to be grouped together,
and it depends only on clustering y.

We now turn to the appearance term. Let xp ∈ {0, 1}
be the segmentation label of pixel p where 0 denotes the
background and 1 the foreground. Let θ0 and θ1 be the
appearance models for the background and foreground, re-
spectively. Our appearance models are based on color
clustering. That is for pixel p, with its cluster index ycp ,
Pr(ycp |θ0) is the probability that p is the background pixel

3 C can be computed efficiently using hash tables.

and Pr(ycp |θ1) is the probability that p is a foreground
pixel. The appearance term is:

Ea(x, y, θ
0, θ1) =

∑
p∈P

−logPr(ycp |θxp), (2)

and it depends on clustering y, segmentation x, and ap-
pearance models θ0, θ1. This is different from formulation
in [18], where appearance does not depend on clustering.

As in [18], rewrite Eq. (2) so that it depends only on
histogram counts. For fixed segmentation x and cluster-
ing y, the optimal distributions θ0, θ1 that minimize Eq. (2)
are normalized histograms computed separately over fore-
ground and background regions. Thus computing optimal
models θ0, θ1 is trivial and efficient, unlike fitting GMMs.

For s ∈ {0, 1}, and color cluster i ∈ {1, 2, . . . , k} let

ns
i (x, y) = |{p | xp = s and ycp = i}|.

That is ns
i (x, y) is the number of pixels that have color in

cluster i and segmentation label s, under fixed y and x. Let

ns(x) = |{p | xp = s}|,

that is n0(x) and n1(x) are the number of pixels in the fore-
ground and background, respectively, under segmentation
x. Then the optimal θ0, θ1 that minimize Eq. (2) are:

Pr(yp|θs) =
ns
i (x, y)

ns(x)
. (3)

Substituting Eq. (3) into Eq. (2), and summing over color
clusters instead of pixels, the appearance term is rewritten:

Ea(x, y) = min
θ0,θ1

Ea(x, y, θ
0, θ1) (4)

=
∑

i∈{1,..,k}

∑
s∈{0,1}

−ns
i (x, y) log

ns
i (x, y)

ns(x)
.(5)

Regrouping the terms in Eq. 5, we get:

Ea(x, y) =
∑
s

h(ns(x)) +
∑
i

∑
s

−h(ns
i (x, y)), (6)

where h(a) = a log(a). The first sum in Eq. 6 is convex and
maximized when half of the pixels in x are labeled as fore-
ground, creating a bias towards a balanced segmentation.
This sum is independent of the clustering variable y.

For a fixed cluster i, the inner part of the second sum,
i.e −h(n0

i (x, y)) − h(n1
i (x, y)), is concave. It is mini-

mized when all pixels in cluster i are assigned to either
foreground or background. Thus the second sum is mini-
mized when foreground and background pixels are in sepa-
rate color clusters. The second sum depends on x and y.

We are now ready to discuss our difference from [18],
and from the previous histogram based appearance ap-
proaches. In [18], the appearance term in Eq. (6) does



Figure 2. Left: original image with initialization box in red. Mid-
dle: result with a smaller λc, segmentation gets stuck immediately
close to the initialization box. Right: result with a larger λc, colors
similar to those in the initial box prefer to group together.

not depend on clustering, since they assume clustering is
fixed at the preprocessing step. We make Eq. (6) depend on
clustering y, and therefore we can search over clusterings
y that make the term in Eq. (6) smaller. This corresponds
to adaptively choosing a clustering that makes foreground
and background appearance more distinct, preventing clus-
terings that collapse foreground/background distinctions.

Consider the example in Fig. 1 again. Let x∗ be the ideal
segmentation, that is x∗

p = 1 for all pixels p in the star,
and x∗

p = 0 for all other pixels. Let y1, y2 be the color
clusterings in Fig. 1(b) and Fig. 1(c), respectively. Then
Ec(y1) < Ec(y2) since y1 is a better color clustering. How-
ever, Ea(x

∗, y1) > Ea(x
∗, y2), since under x∗ and y2, the

normalized histogram counts are as sharply peaked as pos-
sible for segmentation x∗. Let

Eac(x, y) = λcEc(y) + Ea(x, y),

where λc balances the relative importance of Ea and Ec.
For a certain range of λc, Eac(x

∗, y2) has a smaller en-
ergy than Eac(x

′, y1) for any other segmentation x′. This
discussion can be repeated when x∗ is not too far from
the ideal segmentation, for example, for the initialization
box in Fig. 1. Thus a clustering that favors good back-
ground/foreground separation may be preferred.

For a fixed segmentation x, if y is allowed to vary, we
can search for a clustering y such that each cluster either
mostly contains the colors assigned to the background pix-
els, or mostly the colors assigned to the foreground pixels.
This would make little sense if we did not jointly optimize
Ea with Ec. Indeed, without the clustering term, for any
initial segmentation x′, we would assign all colors c that
are completely (or mostly) in the foreground to the same
single cluster 1 and all the colors c that are completely (or
mostly) in the background to another cluster 2, creating a
perfect (or almost perfect) color separation and thus making
appearance energy E(x′, y) very low. We would be likely
immediately stuck at x′. However, Ec discourages assign-
ment of different colors to the same cluster. Parameter λc

controls how much we prefer to keep different colors sepa-
rate. The effect of λc is illustrated in Fig. 2.

There is also a balancing of the number of clusters k be-
tween Ea and Ec. Ea prefers less clusters, since this lowers

Figure 3. The input image with five initializations boxes shown on
the left. Other images are results corresponding to these initializa-
tions, color coded. The red box result is of lowest energy.

its energy. Ec, on the other hand, prefers a larger k, since
with more clusters, its energy is lower.

2.2. Complete Energy

All that is missing is the standard [4, 14] pairwise term
that encourages segmentation x to be spatially coherent:

Es(x) =
∑

(p,q)∈N

wpq|xp − xq|, (7)

where N is a neighborhood system consisting of ordered
pairs of pixels, and wpq is defined as in [4, 14]:

wpq = exp−
||C(p)−C(q)||2

2σ2 ,

where σ is computed as the average of ||C(p)−C(q)||2 over
all neighboring pixel pairs in the input image.

The complete energy is:

E(x, y) = λsEs(x) + Ea(x, y) + λcEc(y), (8)

where λs and λc weight relative importance of each term.
The energy in [18] is as in Eq. 8 but without the cluster-

ing term and without optimization over clusterings y. Re-
call that the appearance term has a balance towards equally
partitioned background and foreground. The addition of
the clustering term does not effect this bias since Ec(y)
does not depend on x. Such energies can be used for
background/foreground separation without user interaction,
since an empty segmentation x carries a high cost. We dis-
cuss optimization without user interaction in Sec. 3, and in
Sec. 4 we describe what changes if there is user guidance.

3. Optimization

The energy in Eq. 8 is hard to optimize, even if we drop
the last term, or if we drop the first two terms. We develop
a stepwise optimization procedure. In the first step, we op-
timize over clusterings y keeping segmentation x fixed. In
the second step, we optimize over segmentations x, keeping
clustering y fixed. Convergence of this iterative procedure
is guaranteed, since each step reduces the energy.



3.1. Initialization

We start with x initialized to the foreground in some rect-
angular box and background outside the box, see Fig. 3. We
try five different initialization boxes, placed as illustrated
in Fig. 3, and run the optimization procedure described in
this section for each initialization. Initialization boxes are
placed in the central portion of the image. This reflects the
prior knowledge that foreground objects are often centrally
located. We choose the lowest energy segmentation. Two
iterative steps are described in Sec. 3.2 and 3.3.

3.2. Optimizing over y

Fixing segmentation x, to optimize Eq. 8 over y, we need
to consider only Eac(x, y) = Ea(x, y) + λcEc(y), since
Es(x) does not depend on y. If only the clustering term
Ec involved variables y, then we could apply the standard
kmeans algorithm to optimize Ec, which finds a local mini-
mum very effectively. However, kmeans algorithm is not di-
rectly applicable because changing y also changes Ea(x, y).
We develop an optimization procedure which is a combina-
tion of kmeans and a popular swap move algorithm [5].

Let us first review the kmeans algorithm. Starting with
some initial cluster centers µi, for each color c, we assign yc
to cluster i with the closest µi. That is, yc = argmini||c −
µi||2. This is called the assignment step. Next each µi is
updated with the mean of all colors currently assigned to it:

µi =
1

Pi(y)

∑
p∈Pi(y)

cp.

These steps are iterated until convergence.
Swap-kmeans We optimize Eac in a kmeans fashion.
There are two steps, updating of the means and cluster as-
signment. Updating the means is just as in kmeans, since
this step does not change y, and therefore, it does not change
Ea(x, y). Furthermore, updating the means is guaranteed
not to increase Ec(y), and, therefore, also energy Eac(x, y).

The next step is cluster assignment. We adapt the swap
algorithm from [5] for this step. Let us review the swap al-
gorithm first. Given a multi-label energy defined over some
set of sites, the swap algorithm cycles through all pairs of
labels α, β and finds the optimal subset of sites currently
labeled as α to switch to β together with the optimal set of
sites currently labeled as β to switch to α. That is sites that
are currently labeled as α or β are allowed to exchange their
labels in an optimal manner. The swap move is performed
efficiently with graph cuts [5] .

In our case, the sites are the image colors c ∈ C, and
the labels are color cluster indexes {1, 2, ..., k}. Thus we
iterate over all cluster index pairs (i, j) and try to find the
best possible re-assignment of cluster indexes i, j among all
the colors c that currently have yc = i or yc = j.

Figure 4. Color clustering illustration. Initial and final color clus-
terings in (b) and (d) are visualized with random colors for clarity.
Notice the initial clustering in (b) puts many tiger colors together
with its reflection colors in one cluster, visualized with greenish
color. The final clustering after optimization described in Sec. 3.2
is in (d). Notice that now these colors are well separated.

Recall the definition of Ea(x, y) in Eq. 6. The only terms
in Ea(x, y) that are effected by the (i, j)-color swap are:

− h(n0
i )− h(n0

j )− h(n1
i )− h(n1

j ), (9)

For brevity, we drop the dependence on x, y from ns
i ’s.

Assume that all pixels that have equal color are assigned
either to the foreground or the background under current
segmentation x, or, at least, a large majority of pixels with
the same color have the same segmentation label. This is
usually satisfied in practice during the execution of the al-
gorithm, since the same color is unlikely to be evenly split
between foreground and background under any appearance
model. The exception is the initialization step, but such ini-
tializations are easy to avoid in practice. Under this assump-
tion, in the (i, j)-color swap, the first two terms in Eq. 9 are
independent of the last two terms and therefore the first two
and the last two can be optimized separately.

Now recall the definition of Ec(x, y) in Eq. 1. In Ec(y),
the (i, j)-color swap effects only the terms:∑

p∈Pi(y)

||cp − µi||2 +
∑

p∈Pj(y)

||cp − µj ||2. (10)

We rewrite Eq. 10 in a more convenient form, but first
more notation. Let mc be the number of pixels that have
color c and let Ci(y) be the set of colors in cluster i under
clustering y. For brevity we write Ci. Eq. 10 can be written:∑

c∈Ci

mc||c− µi||2 +
∑
c∈Cj

mc||c− µj ||2. (11)

Let us describe optimization of just the first two terms in
Eq. 9, since optimization of the last two terms is identical.



We call these two cases the background (i, j) swap and the
foreground (i, j) swap, respectively. Let C0

i be the colors
that are currently assigned to cluster i and pixels with these
colors belong to the background, or at least the majority of
them belongs to the background under current segmentation
x (recall our assumption above). Then only the colors in
Cm = C0

i ∪ C0
j participate in the move. Let v be the size

of Cm. Let us introduce binary variables z1, z2, ..., zv, one
zl for each c ∈ Cm. Let g(l) be the mapping from variable
zl to the actual color it corresponds to in Cm.

The interpretation of these binary variables is as follows.
If zl = 0, this means that the corresponding color g(l) is
assigned to cluster i . If zl = 1, then color g(l) is assigned
to cluster j. Let m0

c be the number of the background pixels
that have color c. We define the binary move energy:

E(z) =
∑

l∈{1,...,v}

mgl ||g(l)− µzl ||2−m0
gl
h(n0

0)−m0
gl
h(n0

1),

(12)
where n0

0 is the number of variables zl assigned to 0 and n0
1

is the number of zl assigned to 14.
The first term in Eq. 12 is a unary term, and the last two

terms are concave cardinality functions of the number of
variables zl assigned to label 1. With an addition of aux-
iliary variables, such functions can be optimized with an
arbitrary degree of accuracy with graph cuts [9]. Since we
do not have pairwise cliques, optimization does not require
graph cuts and is very efficient. We enumerate all possi-
ble assignment to the auxiliary variables, and for each such
assignment, the energy in Eq. 12 is optimized by choosing
the best label for each zl individually. Finally we choose
the assignment corresponding to the lowest energy out of
all enumerated auxiliary pixel assignment cases. We found
it sufficient to have four auxiliary variables, giving us only
a rough approximation to the concave term. However, this
makes enumeration more efficient than graph cuts.

Due to the greediness of our approach, after a foreground
and background (i, j) swap, it may happen that either clus-
ter i or cluster j is empty. In this case, we simply assign
all the colors with the majority of pixels in the foreground
to cluster i and all the colors with the majority of pixels
in the background to j. This is guaranteed to keep energy
Eac(x, y) unchanged, but lowers Ec(y). Optimization over
clustering y is illustrated in Fig. 4.

3.3. Optimizing over x

In this step, we find x that minimizes our energy E,
keeping y fixed to the values computed at the previous step
(Sec. 3.2). Optimizing over x effects Es and Ea. This step
is performed just like in [2], iteratively. First we compute
the new x′ that optimizes Es(x)+Ea(x, y) using the graph
cut algorithm of [3]. We then update Ea(x

′, y) in Eq. (5)

4For brevity, we omit from notation the dependence of n0
0 and n0

1 on z.

to reflect the new histogram counts induced by the new x′.
This is guaranteed not to increase the total energy. We it-
erate computing x′ and updating histogram counts until a
local minimum of Es(x) + Ea(x, y) is reached.

4. Experimental Results
We evaluate our segmentation energy with the clustering

term on camouflage images as well as standard interactive
and non-interactive (figure-ground or saliency) segmenta-
tion datasets with ground truth. The standard benchmarks
do not contain many difficult (camouflage) images, but our
energy still shows some improvement over the standard en-
ergy, i.e. the one without the color clustering term.

We used two datasets with ground truth ( [1], [14]), as
well as animal camouflage images. For the datasets with
ground truth, for each algorithm, we chose the parameters
that optimize the error rate, as is common practice in the
field. For the camouflage images, we used the parameters
that work best on the database from [14].

4.1. Results on Camouflage Images

In Fig. 5, we show the results of our approach on images
with camouflage. In Fig. 5(a) we show the original image
with the central box used for initialization. In Fig. 5(b) we
show the initial color clustering and in Fig. 5(c) the final
color clustering estimated by our algorithm. Notice that the
foreground object is much more distinct in (c) compared to
the initial clustering in (b). In Fig. 5(d) we show our seg-
mentation results. Our results are much better compared to
the fixed (non-optimized) color clusterings, which we show
in (e,f,g). They correspond, respectively, to k-means, quan-
tized histogram, and full histogram clusterings.

4.2. Interactive Benchmarks
In this section, we use the GrabCut [14, 13] dataset for

evaluation. We place initialization boxes for x only in-
side the area indicated as the foreground or uncertain by
the user. The areas indicated as the background (if any),
are hard-constrained. Note that our background is initial-
ized from all hard-constrained background pixels, which
is somewhat different from other papers. In table 1, we
compare our approach (“Ours”) with the energy optimiza-
tion without the clustering term. Our energy contains three
terms, the standard Es and Ea plus the clustering term Ec

that we introduced into the segmentation energy. We com-
pare to optimization of the same energy but without the
use of clustering term Ec, under different appearance mod-
els. Namely, we compare to GMMs(“GMM”); full color
histograms (“Full Hist.”); color quantization in equal bins
(“Color Quant.”); and, finally, color clustering with kmeans
(“Color Clust.”). For all energies, Es term is exactly the
same, while the Ea term is computed according the appear-
ance model being used. To make comparisons fair, for each



Figure 5. Results on camouflage images: (a) original image with the central box; (b) initial color clustering; (c) final color clustering of our
algorithm; (d) our results; (e) results with k-means clustering; (f) results with quantized histogram; (g) results with full histogram

algorithm, we found parameters that minimize the pixel er-
ror computed using ground truth.

Out of the histogram-based methods, full histogram is
the worst, it is likely to have unreliable bin counts. Color
clustering is slightly better than color quantization. But our
method, with all three energy terms, performs the best. Our
running time is nearly as efficient as the other histogram
based methods because we are able to implement all the
optimization related to the Ec + Ea terms very efficiently
based on histogram count manipulations, which is propor-
tional to the number of distinct colors in the image, usually
much smaller than the number of pixels.

Our method does not achieve the best error rates [17] on
the GrabCut dataset5. However, our motivation here is to
show the advantages of our energy vs. non-optimized color
clustering models, and not (necessarily) to achieve the state-
of-the art results on this particular dataset.

All methods will have a variation in performance rela-
tive to parameter settings. Our approach is relatively stable.
Varying λs from 200 to 600 in steps of 100, and λc from
0.005 to 0.05 in steps of 0.005, gives error rates in the range
from 7.5% to 10.2%.

4.3. Non­Interactive Benchmarks

We now evaluate our approach in a non-interactive man-
ner, i.e. for salient object segmentation. We use the saliency
datasets from [1], original images from [12]. In addition,

5 Also note that [17] excludes one of the images and has a heuristic
that adapts a volume balancing weight parameter to each image. While
we could also develop adaptive heuristics, we find that comparison on the
same energy but with and without a clustering term is a cleaner approach.

% pixel err aver. time (sec)
Es + Ea + Ec (Ours) 7.5 10.4
Es + Ea : (GMM) 8.9 5.4
Es + Ea : (Full Hist.) 12.3 3.6
Es + Ea: (Color Quant.) 8.5 4.8
Es + Ea: (Color Clust.) 8.2 7.2

Table 1. Pixel error percentages and average running times on the
GrabCut database, in interactive setting.

GrabCut Achanta
Es + Ea + Ec (Ours) 8.0 6.0
Es + Ea : (GMM) 9.4 7.5
Es + Ea : (Full Hist.) 13.8 10.5
Es + Ea: (Color Quant.) 9.3 8.2
Es + Ea: (Color Clust.) 8.8 7.6

Table 2. Pixel error percentages. Notice that the GrabCut database
is used here without the user provided bounding box.

we also run experiments without the interactivity informa-
tion on the GrabCut database, since there are many images
with a clear “salient” object. The pixel error counts are in
Table 2, and the methods we compare to are the same as
in Table 1. As far as we know, we are the first to report
non-interactive results on the GrabCut dataset.

Achanta dataset was constructed specifically for saliency
and therefore most often contains an obvious salient object.
Grabcut is for interactive segmentation and, often also con-
tains an obvious object of interest. Again, the full histogram
performs the worst out of Es + Ea methods. Our method



performs the best, with a small but noticeable gap.
For the Achanta database, a more standard comparison

metric published in the literature is the F-measure, com-
puted as 1.3·Precision·Recall

0.3·Precision+Recall . The methods in Table 2 have
F-measures, respectively, 87.0, 81.9, 79.7, 81.2, 82.0 with
our approach having again the best F-measure. Notice that
this F-measure is very close to the state of the art F-measure
of 90 % given by the algorithm [6] specifically designed for
saliency detection, whereas our energy is rather generic.

Conclusions and Future Work

We propose a novel energy function that makes color
clustering an integral part of the segmentation energy,
not a separate pre-processing step. Our energy function
with a clustering term favors clusterings that make fore-
ground/background appearance more distinct. Since exact
optimization of our energy is not feasible, we develop an
approximate step-wise algorithm. As part of our optimiza-
tion approach, we adapt the popular swap move algorithm
to our energy function. We show the advantage of including
the color clustering term into the energy function on cam-
ouflage images, as well as standard segmentation datasets.

Currently, we use a greedy block-coordinate descent ap-
proach to optimize NP-hard energy, which can get stuck in a
poor local minimum. To some degree, we address the prob-
lem by using several initializations, Fig. 3. A more global
approach, for example based on LP relaxation, should give
more significant improvements. Even individual BCD steps
could be improved, for example the step in Sec. 3.3 could be
better optimized using the pseudo-bound method [16], and
we could develop expansion moves for the step in Sec.3.2,
which usually work better than the swap moves.

Another direction is to justify our energy from the the
MDL principle. This may give useful insights on parame-
ter settings, as well as useful variations of the energy terms.
Note that a special case of our joint segmentation and bin-
ning energy (8) can be written using information theoretic
concepts:

(H(y) +H(c|y)−MI(x, y)) + λsEs(x) (13)

where binning entropy and mutual information H(y) −
MI(x, y) = H(y|x) ∼ Ea relate to our likelihoods term,
while conditional entropy H(c|y) corresponds to our K-
means color clustering term Ec. Here we assume that each
pixel’s color cp is unique so that there is one-to-one cor-
respondence between segmentation variables xp and clus-
tering variables yp := ycp . This allows to formally define
mutual information MI(x, y) between segmentation x and
color binning y. Adding to this energy one more sparsity
term ||y||0 counting the number of distinct color clusters
(or bins) we get objective

γ||y||0 + (H(y) +H(c|y)−MI(x, y)) + λsEs(x) (14)

Figure 6. Error rates for pseudo-bound optimization [16] of Grab-
Cut energy with fixed regular bins of different size (horizontal
axis). Errors are averaged over GrabCut dataset except the “cross”
image often omitted (bounding box covers the whole image). The
curves correspond to different values of the smoothness parame-
ter λs. The blue line indicates value 5.4 - the average error when
optimal bin size is automatically selected for each image based on
MI energy (14) for λs = 38. Here we search only over binnings
with regular equal bins.

which can be directly derived from MDL principles for a
straightforward image compression scheme [7]. One ad-
vantage of such energies is that parameters γ and λs follow
from the scheme. Figure 6 shows preliminary results for an
MDL energy as in (14). The energy is used to automati-
cally determine a color bin resolution (number of bins per
channel) optimal for each image when computing segmen-
tation with GrabCut energy [14], which is a subset of terms
in (14).
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