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Abstract

Many applications in vision require estimation of thin
structures such as boundary edges, surfaces, roads, blood
vessels, neurons, etc. Unlike most previous approaches,
we simultaneously detect and delineate thin structures with
sub-pixel localization and real-valued orientation estima-
tion. This is an ill-posed problem that requires regulariza-
tion. We propose an objective function combining detection
likelihoods with a prior minimizing curvature of the center-
lines or surfaces. Unlike simple block-coordinate descent,
we develop a novel algorithm that is able to perform joint
optimization of location and detection variables more ef-
fectively. Our lower bound optimization algorithm applies
to quadratic or absolute curvature. The proposed early vi-
sion framework is sufficiently general and it can be used in
many higher-level applications. We illustrate the advantage
of our approach on a range of 2D and 3D examples.

1. Introduction
A large amount of work in computer vision is devoted to

estimation of structures like edges, center-lines, or surfaces
for fitting thin objects such as intensity boundaries, blood
vessels, neural axons, roads, or point clouds. This paper
is focused on the general concept of a center-line, which
could be defined in different ways. For example, Canny
approach to edge detection implicitly defines a center-line
as a “ridge” of intensity gradients [6]. Standard methods
for shape skeletons define medial axis as singularities of a
distance map from a given object boundary [35, 34]. In the
context of thin objects like edges, vessels, etc, we consider
a center-line to be a smooth curve minimizing orthogonal
projection errors for the points of the thin structure.

We study curvature of the center-line as a regularization
criteria for its inference. In general, curvature is actively
discussed in the context of thin structures. For example, it
is well known that curvature of the object boundary has sig-
nificant effect on the medial axis [17, 35]. In contrast, we
are directly concerned with curvature of the center-line, not

Figure 1. Edge detection. The result of our algorithm for squared
(on the left) and absolute (on the right) curvature approxima-
tions. Green and black lines correspond to edges with high and
medium confidence measure correspondingly. Note the strong bias
to straight lines on the right: the energy prefers a small number of
sharp corners rather than many smooth corners like on the left.

the curvature of the object boundary. Moreover, we do not
assume that the boundary of a thin structure (e.g. vessel or
road) is given. Detection variables are estimated simulta-
neously with the center-line. This paper proposes a general
energy formulation and an optimization algorithm for de-
tection and subpixel delineation of thin structures based on
curvature regularization.

Curvature is a natural regularizer for thin structures and
it has been widely explored in the past. In the context of
image segmentation with second-order smoothness it was
studied by [31, 37, 32, 5, 14, 28, 25]. It is also a popular
second-order prior in stereo or multi-view-reconstruction
[20, 27, 40]. Curvature has been used inside connectivity
measures for analysis of diffusion MRI [24]. Curvature
is also widely used for inpainting [3, 7] and edge com-
pletion [13, 39, 2]. For example, stochastic completion
field technique in [39, 24] estimates probability that a com-
pleted/extrapolated curve passes any given point assuming
it is a random walk with bias to straight paths. Note that
common edge completion methods use existing edge detec-
tors as an input for the algorithm.

In contrast to these prior works, this paper proposes a
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general low-level regularization framework for detecting
thin structures with accurate estimation of location and ori-
entation. In contrast to [39, 13, 24] we explicitly mini-
mize the integral of curvature along the estimated thin struc-
ture. Unlike [12] we do not use curvature for grouping pre-
detected thin structures, we use curvature as a regularizer
during the detection stage.

Related work: Our regularization framework is based
on the curvature estimation formula proposed by Olsson et
al. [26, 27] in the context of surface fitting to point clouds
for multi-view reconstruction, see Fig.2(a). One assumption
in [26, 27] is that the data points are noisy readings of the
surface. While the method allows outliers, their formulation
is focused on estimation of local surface patches. Our work
can be seen as a generalization to detection problems where
majority of the data points, e.g. image pixels in Fig.2(c), are
not within a thin structure. In addition to local tangents, our
method estimates probability that the point is a part of the
thin structure. Section 2 discusses in details this and other
significant differences from the formulation in [26, 27].

Assuming pi and pj are neigh-
boring points on a thin structure,
e.g. a curve, Olsson et al. [26]
evaluate local curvature as fol-
lows. Let li and lj be the tangents
to the curve at points pi and pj .
Then the authors propose the fol-
lowing approximation for the ab-
solute curvature

|κ(li, lj)| =
||li − pj ||+ ||lj − pi||

||pi − pj ||

and for the squared curvature

κ2(li, lj) =
||li − pj ||2 + ||lj − pi||2

||pi − pj ||2

where ||li−pj || is the distance between point pj and line li.
Assume that the curve r⃗ = f(τ) is parameterized by arc-

length τ such that τ1 ≤ τ ≤ τM . If (τ1, τ2, . . . , τM ) is an
increasing parameter sequence then the curvature of f can
be approximated by∫

|κ|αdτ ≈
∑

(i,j)∈N

|κ(li, lj)|α

where N = {(i, i+ 1) | i = 1, 2, . . .M − 1} is a neighbor-
hood system for curve points pi = f(τi) and li = ḟ(τi) are
their tangent lines.

Olsson et al. [26] use regularization for fitting a surface
(or curve) to a cloud of points in 3D (or 2D) space. Every
observed point p̃i is treated as a noisy measurement of some
unknown point pi that is the closest point on the estimated
surface, see Fig.2(a). Each p̃i is associated with unknown

local surface patch li that is a tangent plane for the surface at
pi. The proposed surface fitting energy combines curvature-
based regularization with the first order data fidelity term

E(L) =
∑

(i,j)∈N

|κ(li, lj)|αwij +
∑
i

1

σ2
||li − p̃i||2 (1)

where L = {li} is the set of tangents, N is a neighbor-
hood system, σ is non-negative constant, wij is a positive
constant such that

∑
j∈Ni

wij = 1. To minimize (1), the
algorithm in [26] iteratively optimizes the assignment vari-
ables for a limited number of tangent proposals, and then
re-estimates tangent plane parameters, see Fig.2(a).

In contrast to [26], our method estimates thin structures
in the image grid where, a priori, it is unknown which pix-
els belong to the thin structure, see Fig.2(c). We introduce
set X = {xi} of indicator variables xi ∈ {0, 1} where
xi = 1 iff pixel p̃i belongs to the thin structure. Our ba-
sic energy (2) and its extensions combine unary detection
potentials with curvature regularization. Due to the regular-
ity of our grid neighborhood, we use constant weights wij ,
which are omitted from now on. We propose a different op-
timization technique estimating a posteriori distribution of
xi and separate tangents li at each point. As illustrated in
Fig.2(b), our framework is also applicable to energy (1) and
multi-view reconstruction problem as in [26, 27].

Parent&Zucker [29] formulate a closely related trace in-
ference problem for detecting curves in 2D grid. Simi-
larly to us, they estimate indicator variables xi and tan-
gents li. However, they estimate xi and li by enforcing
a co-circularity constraint assuming given local curvature
information, which they estimate in advance. In contrast,
we simultaneously estimate xi and li by optimizing objec-
tive (2) that directly regularizes curvature of the underlying
thin structure. Moreover, [29] quantizes curvature informa-
tion and tangents while our model uses real valued curvature
and tangents. The extension of [29] to 3D is not trivial.

Similarly to [26, 29] we estimate tangents only at a fi-
nite set of points. Additional regularization is required if
continuous center-line between these points is needed [16].

Contributions: It is known that curvature of an object
boundary is an important shape descriptor [33] with a sig-
nificant effect on medial axis [17, 35], which is not robust
even to minor perturbations of the boundary. In the con-
text of thin objects (e.g. edges, vessels) we study a con-
cept of a center-line (a smooth 1D curve minimizing the
sum of projection errors), which is different from medial
axis. We regularize the curvature of the center-line. Un-
like many standard methods for center-lines, we do not as-
sume that the shape of the object is given and propose a gen-
eral low-level vision framework for thin structure detection
combined with sub-pixel localization and real-valued orien-
tation of its center-line. Therefore, we propose an approach
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(a) Olsson’s model [26] (b) Our model for cloud of points (c) Our model for grid points
Figure 2. Comparison with [26]. An empty circle in (b) and (c) denotes low confidence and a dark blue circle means high confidence.

that takes into account all possible configurations of the in-
dicator variables while estimating the tangents. This signif-
icantly improves stability with respect to local minima. Our
optimization method uses variational inference and trust re-
gion frameworks adapted to absolute and quadratic curva-
ture regularization.

Our proof-of-the-concept experiments demonstrate en-
couraging results in the context of edge and vessel detection
in 2D and 3D images. In particular, we obtain promising
results for estimating highly detailed vessels structure on
high-resolution microscopy CT volumes. We also show ex-
amples of sub-pixel edge detection regularizing curvature.
While there are no databases for comparing edge detectors
with real-valued location and orientation estimation, we ob-
tained competitive results on a pixel-level edge detection
benchmark [11]. Our general early vision methodology can
be integrated into higher semantic level boundary detection
techniques, e.g. [22], but this is outside the scope of this
work. Our current sequential implementation is not tuned
to optimize performance. Its running time for edges in 2D
image of Fig.1 is 20 seconds and for vessels in 3D vol-
ume of Fig.10 is one day. However, our method is highly-
parallelizable on GPU and fast real-time performance on 2D
images can be achieved.

In Section 2 we describe the proposed model and discuss
a simple block-coordinate descent optimization algorithm
and its drawbacks. In Section 3 we propose a new optimiza-
tion method for our energy based on variational inference
framework. In Section 4 we describe the details of the pro-
posed method and discuss the difference between squared
and absolute curvatures (Subsection 4.1). We describe sev-
eral applications of the proposed framework in Section 5
and conclude in Section 6.

2. Energy formulation

In the introduction we informally defined the center-line
of a thin structure as a smooth curve minimizing orthogonal

projection errors. Here we present the energy formalizing
this criterion. First we note that in our model the curve is
not defined explicitly but through points pi it passes and
tangent lines li at these points. The energy is given by

E (L,X) =
∑

(i,j)∈N

κ2(li, lj)xixj+

+
∑
i

1

σ2
||li − p̃i||2+xi +

∑
i

λixi (2)

where N is a neighborhood system, X = {xi} is a set of
indicator variables xi ∈ {0, 1} where xi = 1 iff pixel p̃i be-
longs to the thin structure, λi define unary potentials penal-
izing/rewarding presence of the structure at p̃i. In contrast
to (1), potentials λi define the data term while 1

σ2 ||li− p̃i||2+
is a soft constraint.

We explore two choices of the soft constraint
||li − p̃i||+. The first one uses Euclidean distance. In
that case it models normally distributed errors. Al-
though it is appropriate for many applications, e.g.
surface estimation in multi-view reconstruction [26,
27], the normal errors assumption is no longer valid
for the image grid because the discretization errors
are not Gaussian. In fact, using Euclidean distance
may make the soft constraint term proportional to the
length of the center-line, see illustration on the right.

d

max(0, |d| − 1)2
Thus, we also propose a truncated

form of Euclidean distance:

||li− p̃i||+ = max(0, ||li− p̃i|| − 1).
(3)

This does not penalize tangent lines li that are within one
pixel from points p̃i. Different applications may require a
different choice of no-penalty threshold.

Extensions. We can extend the energy (2) by adding other
terms that encourage various other useful properties. For
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example, energy

E′(L,X) = E(L,X)− γ
∑

(i,j)∈N

xixj (4)

for γ > 0 will reward well aligned tangents. The effect of
this term is shown in Fig.6. This term is similar to edge “re-
pulsion” in MRF-based segmentation. The overall pairwise
potential (κ(li, lj)− γ)xixj encourages edge continuity.

Another extension is to use prior knowledge about the
center-line direction gi at pixel p̃i:

E′(L,X) = E(L,X) + β
∑
i

m(li, gi)
2xi. (5)

The term m(li, gi) measures how well tangent line li is
aligned with prior gi:

m(li, gi) = ||gi|| sin∠(li, gi).

The magnitude of gi constitutes the confidence measure.
For example, vectors gi could be obtained from the image
gradients or the eigenvectors in the vesselness measure [9].

2.1. Block­coordinate descent optimization

To motivate our optimization approach for energy (2) de-
scribed in Section 3, first we describe a simpler optimization
algorithm and discuss its drawbacks.

The most obvious way to optimize energy (2) is a block-
coordinate descent. The optimization alternates two steps
described in Alg.1. The auxiliary energy optimized on line
4 is a non-linear least square problem and can be optimized
by a trust-region approach, see Section 4. The auxiliary
function on line 5 is a non-submodular binary pairwise en-
ergy that can be optimized with TRWS[18].
Algorithm 1 Block-coordinate descent

1: Initialize L0 and X0

2: k ← 0
3: while not converged do
4: Optimize Lk+1 ← argminLE(L,Xk)
5: Optimize Xk+1 ← argminX E(Lk+1, X)
6: k ← k + 1
7: end while

We found that Alg.1 is extremely sensitive to local min-
ima, see Fig.3. The reason is that tangents li for points with
indicator variables xki = 0 do not participate in optimiza-
tion on line 4. To improve performance of block-coordinate
descent, we tried heuristics to extrapolate tangents into such
regions. We found that good heuristics should have the fol-
lowing properties:

2π 2π + π

1. Since integral of curvature is sen-
sitive to small local errors (see the fig-
ure on the right), the extrapolating pro-
cedure should yield close tangents for

Figure 3. An example of local minima for Alg.1. The more “blue”
is a pixel, the more likely it is to lie on an edge. Green arrows
correspond to pixels that were initialized as edges. Black arrows
correspond to the edges detected by Alg.1. This local minimum
consists of two disconnected center-lines. The globally minimum
solution smoothly connects the two pieces into a single center-line.

neighbors. Otherwise step 5 of the algorithm is ineffective.
This issue could be partially solved by using energy (4). In
this case it can be beneficial to connect two tangents even if
there is some misalignment error.

2. The heuristic should envision that some currently dis-
connected curves may lie on the same center-line, see Fig.3.

The first property was easy to incorporate, while the sec-
ond would require sophisticated edge continuation methods,
e.g. a stochastic completion field [39, 24]. Instead we de-
velop a new optimization procedure (Section 3) based on
variational inference. The advantage of our new procedure
is that it is closer to joint optimization of L and X .

3. Variational Inference
Ideally, we wish to jointly optimize (2) with respect to all

variables. This is a mixed integer non-linear problem with
an enormous number of variables. Thus, it is intractable.
However, we can introduce elements of joint optimization
based on stochastic variational inference framework. The
proposed approach takes into account all possible configu-
rations of indicator variables xi while estimating tangents
li. This significantly improves stability w.r.t. local minima.

Energy (2) corresponds to a Gibbs distribution:

P (I,X,L′) =
1

Z
exp (−E(L′, X))

where Z is a normalization constant and the image is given
by data fidelity terms I = {λi}. Here I are visible vari-
ables, indicator variables X and tangents L′ = {l′i} are hid-
den ones. We add a prime sign for tangent notation to dis-
tinguish values of random variables and parameters of the
distribution. Our goal is to approximate the posterior distri-
bution P (X,L′|I) of unobserved (hidden) indicatorsX and
tangents L′ given image I . The problem of approximating
the posterior distribution has been extensively studied and
is known as variational inference [4].

Variational inference is based on the decomposition

lnP (I) = L(q) + KL(q||p) (6)

where lnP (I) is the evidence, q(X,L′) is a distribution
over the hidden variables, p(X,L′) = P (X,L′|I) is the
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posterior distribution, and

L(q) =
∑
X

∫
q(X,L′) ln

(
P (I,X,L′)

q(X,L′)

)
dL′, (7)

KL(q||p) = −
∑
X

∫
q(X,L′) ln

(
P (X,L′|I)
q(X,L′)

)
dL′.

(8)

Since KL (Kullback–Leibler divergence) is always non-
negative, the functional L(q) is a lower bound for the ev-
idence lnP (I). One of the nice properties of this decom-
position is that the global maximum of lower bound L co-
incides with the global minimum of KL(q||p) and optimal
q∗(X,L′) = argmaxq L(q) is equal to the true posterior
P (X,L′|I) [4].

Unfortunately (7) cannot be optimized exactly. To make
optimization tractable, in variational inference framework
one assumes that q belongs to a family of suitable distri-
butions. In this work we will assume that q is a factorized
distribution (mean field theory [30]):

q(X,L′) =q(X)q(L′), (9)

q(X) =
∏
i

qi(xi) =
∏
i

qxi
i (1− qi)1−xi , (10)

q(L′) =
∏
i

δ(l′i − li) (11)

where δ(l′i − li) is a deterministic (degenerate) distribution
with parameter li. Under this assumption lower bound func-
tional L becomes a function of parameters qi and li. We de-
note this function L(Q,L) where Q = {qi} and L = {li}.

The proposed algorithm is defined by Alg.2. It optimizes
lower bound L(Q,L) in block-coordinate fashion. The al-
gorithm returns optimal tangents l∗i , see Fig.5(b), and opti-
mal probabilities q∗i , see Fig.5(c).
Algorithm 2 Block-Coordinate Descend for Variational In-
ference

1: Initialize L0 and Q0

2: k ← 0
3: while not converged do
4: Optimize Lk+1 ← argmaxL L(Qk, L)
5: Optimize Qk+1 ← argmaxQ L(Q,Lk+1)
6: k ← k + 1
7: end while
8: return Lk, Qk

Now we consider optimization of L over L. Taking into
account (11), (2) and (7) we can derive

argmax
L
L(Qk, L) = argmin

L

∑
X

qk(X)E(X,L) =

=argmin
L

∑
(i,j)∈N

ψijq
k
i q

k
j +

∑
i

ψiq
k
i . (12)

where

ψij ≡ κ2(li, lj),

ψi ≡
1

σ2
||li − p̃i||2+ + λi.

In case of (4) we redefine ψij ≡ κ2(li, lj) − γ, and in case
of (5) we redefine ψi ≡ 1

σ2 ||li − p̃i||2+ + λi + βm(li, gi).
We see that optimization ofL(Qk, L) with respect toL is

a non-linear least square problem. For optimization details
please refer to Section 4.

The optimization w.r.t. Q can be done by coordinate de-
scent. The update equation is [4]

ln q∗i (xi) = Ej ̸=i[lnP (I,X|L)] + const =

= −xi

 ∑
j:(i,j)∈N

ψijqj + ψi

+ const. (13)

The constant in expression (13) does not depend on xi
and thus can be determined from the normalization equation
qi(1)+qi(0) = 1.We initialize q0(xi) = exp(−xiψi)/(1+
exp(−ψi)) on line 1 of Alg.2. We iterate over all pixels up-
date step (13) on line 5 until convergence, which is guaran-
teed by convexity of L with respect to each qi [4].

Note that if we further restrict q to be a degenerate dis-
tribution (meaning q(xi) ∈ {0, 1}) we will get the block-
coordinate descend Alg.1.

The initialization of L0 is application dependent. In
many cases some information about direction of a thin
structure is available. Concrete initialization examples are
described in Section 5.

Alternative interpretations. The goal of Alg.1 is to find
minL,X E(L,X), which is equivalent to

max
L

max
X

(−E(L,X)). (14)

As shown in Section 2 optimization of 14 in a block-
coordinate fashion requires optimization of tangents L with
fixed indicator variables X . This necessitates extrapolation
of tangents. Instead we propose to optimize L taking into
account all possible configurations of X . That is we pro-
pose to replace maximum with smooth maximum:

max
L

∑
X

exp(−E(L,X)).

Then we can write down a decomposition similar to (6),
which provides a lower bound yielding the same optimiza-
tion procedure.

The proposed procedure is closely related to the EM
algorithm[8] where we treat tangents L as the parameters
of the distribution. However, in this case the normalization
constant of the distribution depends on L and optimization
problem is intractable. One possible way to fix this issue is
to use a pseudo likelihood [21].
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4. Trust region for tangent estimation

Optimization of the auxiliary functions on line 4 of Al-
gorithms 1 and 2 as well as energy (1) is a non-linear least
square problem. In [26, 27] energy (1) is optimized using
discrete multi-label approach in the context of surface ap-
proximation. In our work we adopt the inexact Levenberg-
Marquardt method in [41], which is a trust region second
order continuous iterative optimization method.

Each iteration consists of several steps. First, the method
linearizes:

L(qk, L+ δL) ≈ L(δL) ≡

≡
∑

(i,j)∈N

(
|κ(li, lj)|+

∂κ

∂li
δli +

∂κ

∂lj
δlj

)2

qki q
k
j+

+
∑
i

1

σ2

(
||li − p̃i||+ +

∂d

∂li
δli

)2

qki

where for compact notation we define κ ≡ |κ(li, li)| and
d ≡ ||li − p̃i||+. We use [1] for automatic calculation of
derivatives.

Second, the algorithm solves the minimization problem

δL∗ = argmin
δL
L(δL) + λ||δL||2

where λ is a positive damping factor, which determines the
trust region. The method uses an inexact iterative algorithm
for this task.

The last stage of iteration is to compare the predicted en-
ergy change L(δL∗) − L(⃗0) with the actual energy change
L(qk, L + δL∗) − L(⃗0). Depending on the result of com-
parison the method updates variables L and damping factor
λ. For more details please refer to [41].

The most computationally expensive part of Alg.2 is
trust region optimization described in this subsection. From
the technical point of view it consists of derivatives com-
putation and basic linear algebra operations. Fortunately,
these operations could be easily parallelized on GPU. We
leave the GPU implementation for a future work.

4.1. Quadratic vs Absolute Curvature

Previous sections assume squared curvature, but every-
thing can be adapted to the absolute curvature too. We only
need to discuss how to optimize (12) for the absolute curva-
ture. We use the following approximation:

||li − pj ||
||pi − pj ||

≈ ||li − pj ||
2

||pi − pj ||2
· wij (15)

where

wij =
||pi − pj ||+ ϵ

||li − pj ||+ ϵ

Figure 4. The difference between squared (left) and absolute
(right) curvature approximations on an artificial example. Note
the ballooning bias of squared curvature.

and ϵ is some non-negative constant. If ϵ = 0 we have an
approximation of the absolute curvature, if ϵ→∞ we have
an approximation of the squared curvature.

The trust region approach (see Section 4) works with
approximations of functions. It does not require any
particular approximation like in the Levenberg-Marquardt
method [19, 41]. Thus we can approximate the absolute
curvature by treating wij as constants in (15) and lineariz-
ing κ(li, lj) analogously to the squared curvature case.

α

κ

sinα

α

The approximation of curvature
given by [26] is derived under the
assumption that the angles between
neighbor tangents are small. Under this
assumption the sine of an angle is ap-
proximately equal to the angle. And the
approximation essentially computes the sines of the angles
rather than the angles themselves. As a result it significantly
underestimates the curvature of sharp corners.

For example, let us consider the integral of absolute cur-
vature over a circle and a square. The integral of the ap-
proximation is 2π and 4 correspondingly, while the integral
of the true absolute curvature is 2π in both cases. So the en-
ergy using this approximation of absolute curvature tends
to distribute curvature into a small number of sharp corners
showing strong bias to straight lines. Although approxima-
tion of squared curvature also underestimates curvature of
sharp corners, it does not have a strong bias to straight lines.
See figures 1 and 4 for comparison of the approximations.

5. Applications

5.1. Contrast edges

Here we consider an application of our method to edge
detection and real-valued edge localization.

Sobel gradient operator [36] returns the gradient magni-
tude and direction for every image pixel. The high gradient
magnitude is an evidence of a contrast edge. The direction
of the gradient is a probable direction of the edge. We use
the output of the gradient operator to define data fidelity
terms of energy (4). For every pixel p̃i let gi be the gradient
vector returned by the operator. We normalize vectors gi by
the sample variance of their magnitudes over the whole im-
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(a) Original image (b) The output of algorithm (c) Probabilities qi (d) Subpixel probabilities q̃p
Figure 5. The result of the proposed algorithm. The original image is shown on (a). The zoomed in region is shown with a red box.
Estimated tangents are shown in (b). Green color denotes tangents corresponding to pixels p̃i such that qi ≥ 1

2
, and tangents corresponding

to pixels with qi ≥ 1
4

are shown in black. (c) shows probabilities qi. (d) shows the probabilities at doubled resolution produced by
projecting points to theirs tangents: q̃p = qi.

(a) γ = 0 (b) γ = 0.25
Figure 6. The effect of γ in energy (4). Tangents li whose qi ≥ 1

2

are shown in green, tangents such that 1
4
< qi <

1
2

are shown in
black. Increasing γ results in increasing probabilities qi of well
aligned tangents.

Figure 7. Examples of the output. The first row shows original
images from CFGD database[11]. The second row shows edge
masks at the original resolution produced by our algorithm.

Figure 8. Comparison with Canny edge detector [6]. Note that
Canny only produces the labeling of the pixels.

age. We define likelihood λi using hand picked linear trans-
formation of the gradient magnitude: λi = 1.8− 1.4 · ||gi||.
These parameters were optimized on a single picture shown
in Fig.5(a). The initial tangents (line 1 of Alg.2) li are
collinear with gradients gi and pass through pixels p̃i.

The results in figures 1, 5-9 was obtained by optimizing
energy (4) using (3) as a soft constraint, with parameters
σ = 1, γ = 0.25 and 8-connected neighborhood system N .

Figure 9. Comparison of out method (CURV) with the baseline
gradients (GRAD), Pb [23] and the third order filter (TO) [38] on
the database of [11]. Evaluation of Pb & TO is given by [11].

According to our model pixel p̃i is a noisy measurement
of point p on a contrast edge. Denoised point pi is the pro-
jection of p̃i onto li. To generate an edge mask (possibly at
higher resolution) we can quantize pi and use qi as values at
quantized pi. If during this process we have a conflict such
that several points are quantized into same pixel we choose
the one with maximum probability. Fig.5(d) shows an edge
mask whose resolution was doubled. Fig.7 shows examples
of the edge mask at the original resolution.

We also compared our results with a few edge detection
algorithms whose result is an edge mask, see Fig.9. This
shows that our general method achieves F-measure of 0.83,
which is very close to F-measure of 0.84, given by the best
evaluated algorithm in [38]. Please note that [38] was de-
signed specifically for edge detection in images, while our
approach is a generic method for thin structure delineation.

5.2. Vessels in 3D

Vessel center-line localization in 3D medical volumes is
an important task for medical diagnostics and pre-clinical
drug trials.

For the experiments in this section we used a micro-
scopic computer tomography [10, 15] scan of the mouse’s
heart. The scan is a 3D volume of size 585x525x892. For
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Figure 10. Example output of vessel center-line detection in 3D.
Only tangents li with probabilities qi ≥ 1

2
are shown (in purple).

Figure 11. Center-line fitting for mouse heart. Three main
branches are show in color. Other tangents are shown in dark gray.

the both experiments the volume was preprocessed with a
popular vessel detection filter of [9]. For every voxel p̃i the
filter returns vesselness measure vi such that higher values
of vi indicate higher likelihood of vessel presence at p̃i. The
filter also estimates direction gi and scale σi of a vessel.

For this application we use extension (5) of energy (2).

Coefficient 1
σ in front of the soft constraint in the energy de-

termines how far tangents li can move from voxels p̃. Since
this data has high variability in vessel thickness, we cannot
use the same σ for every voxel. We substitute σi produced
by the vesselness filter for σ in energy (5):

E(L,X) =
∑

(i,j)∈N

κ2(li, lj)xixj+

+
∑
i

(
1

k2σ2
i

||li − p̃i||2 + βm(gi, li) + λi

)
xi

where k is a positive constant and λi is obtained from ves-
selness measure vi by the same linear transformation that
we use in Section 5.1. We set β = 0.5 and k = 20 and use
26-connected neighborhood system N .

For the first experiment we cropped the volume forming
a subvolume of size 81x187x173. We also removed 85% of
voxels with the lowest values of vi. That yields about 3 ·106
variables to be optimized. Fig.10 shows the result.

The goal of the second experiment is to extract a few
trees describing the cardiovascular system of the whole
heart. To decrease the running time we perform Canny’s [6]
hysteresis thresholding to detect one-dimensional ridges in
the volume. We substitute vesselness measure for inten-
sity gradients in Canny’s procedure. Then we set qi = 1
for voxels detected as ridges and qi = 0 for other voxels.
This yields approximately the same number of optimization
variables. Then we optimize tangents by the algorithm de-
scribed in Section 4. Then the estimated center-line points
are grouped based on the tangent and proximity informa-
tion into a graph and a minimum spanning tree algorithm
extracts the trees. The result is shown in Fig.11.

6. Conclusion
We present a novel general early-vision framework for

simultaneous detection and delineation of thin structures
with sub-pixel localization and real-valued orientation es-
timation. The proposed energy combines likelihoods, indi-
cator (detection) variables and squared or absolute curva-
ture regularization. We present an algorithm that optimizes
localization and orientation variables considering all pos-
sible configuration of indicator variables. We discuss the
properties of the proposed energy and demonstrate a wide
applicability of the framework on 2D and 3D examples.

In the future, we plan to explore better curvature approxi-
mations, extend our framework to image segmentation with
curvature regularization, and improve the running time by
developing parallel GPU implementation.

Acknowledgements
We thank Olga Veksler (University of Western Ontario)

for insightful discussions.



In proceedings of “International Conference on Computer Vision” (ICCV), Santiago, Chile, Dec. 2015 p.9

References
[1] S. Agarwal, K. Mierle, and Others. Ceres solver. http:

//ceres-solver.org. 6
[2] T. D. Alter and R. Basri. Extracting salient curves from im-

ages: An analysis of the saliency network. IJCV, 27(1):51–
69, 1998. 1

[3] L. Alvarez, P.-L. Lions, and J.-M. Morel. Image selec-
tive smoothing and edge detection by nonlinear diffusion. ii.
SIAM Journal on numerical analysis, 29(3):845–866, 1992.
1

[4] C. M. Bishop et al. Pattern recognition and machine learn-
ing, volume 4. springer New York, 2006. 4, 5

[5] K. Bredies, T. Pock, and B. Wirth. Convex relaxation of a
class of vertex penalizing functionals. Journal of Mathemat-
ical Imaging and Vision, 47(3):278–302, 2013. 1

[6] J. Canny. A computational approach to edge detection.
PAMI, (6):679–698, 1986. 1, 7, 8

[7] T. F. Chan and J. Shen. Nontexture inpainting by curvature-
driven diffusions. Journal of Visual Communication and Im-
age Representation, 12(4):436–449, 2001. 1

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Jour-
nal of the royal statistical society., pages 1–38, 1977. 5

[9] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A.
Viergever. Multiscale vessel enhancement filtering. In MIC-
CAI98, pages 130–137. Springer, 1998. 4, 8

[10] P. Granton, S. Pollmann, N. Ford, M. Drangova, and
D. Holdsworth. Implementation of dual-and triple-energy
cone-beam micro-ct for postreconstruction material decom-
position. Medical physics, 35(11):5030–5042, 2008. 7

[11] Y. Guo and B. Kimia. On evaluating methods for recovering
image curve fragments. In CVPRW. 3, 7

[12] Y. Guo, N. Kumar, M. Narayanan, and B. Kimia. A multi-
stage approach to curve extraction. In ECCV. 2014. 2

[13] G. Guy and G. Medioni. Inferring global perceptual contours
from local features. In CVPR, 1993. 1, 2

[14] S. Heber, R. Ranftl, and T. Pock. Approximate envelope
minimization for curvature regularity. In ECCV, 2012. 1

[15] D. W. Holdsworth and M. M. Thornton. Micro-ct in small
animal and specimen imaging. Trends in Biotechnology,
20(8):S34–S39, 2002. 7

[16] G. Kamberov and G. Kamberova. Ill-posed problems in sur-
face and surface shape recovery. In CVPR, 2000. 2

[17] B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker.
Shapes, shocks, and deformations i: the components of two-
dimensional shape and the reaction-diffusion space. IJCV,
15(3):189–224, 1995. 1, 2

[18] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. PAMI, 28(10):1568–1583,
2006. 4

[19] K. Levenberg. A method for the solution of certain non-
linear problems in least squares. Quarterly of Applied Math-
ematics 2, pages 164–168, 1944. 6

[20] G. Li and S. W. Zucker. Differential geometric inference in
surface stereo. PAMI, 32(1):72–86, 2010. 1

[21] S. Z. Li. Markov random field modeling in image analysis.
Springer Science & Business Media, 2009. 5

[22] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In ICCV, volume 2, pages 416–423, 2001. 3

[23] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect
natural image boundaries using local brightness, color, and
texture cues. PAMI, 26(5):530–549, 2004. 7

[24] P. MomayyezSiahkal and K. Siddiqi. 3d stochastic comple-
tion fields for mapping connectivity in diffusion mri. PAMI,
35(4):983–995, 2013. 1, 2, 4

[25] C. Nieuwenhuis, E. Toeppe, L. Gorelick, O. Veksler, and
Y. Boykov. Efficient squared curvature. In CVPR, Columbus,
Ohio, 2014. 1

[26] C. Olsson and Y. Boykov. Curvature-based regularization for
surface approximation. In CVPR, pages 1576–1583. IEEE,
2012. 2, 3, 6

[27] C. Olsson, J. Ulén, and Y. Boykov. In defense of 3d-label
stereo. In CVPR, pages 1730–1737. IEEE, 2013. 1, 2, 3, 6

[28] C. Olsson, J. Ulén, Y. Boykov, and V. Kolmogorov. Partial
enumeration and curvature regularization. In ICCV, pages
2936–2943. IEEE, 2013. 1

[29] P. Parent and S. W. Zucker. Trace inference, curvature con-
sistency, and curve detection. PAMI, 11:823–839, 1989. 2

[30] G. Parisi. Statistical field theory, volume 4. Addison-Wesley
New York, 1988. 5

[31] T. Schoenemann, F. Kahl, and D. Cremers. Curvature reg-
ularity for region-based image segmentation and inpainting:
A linear programming relaxation. In ICCV, Kyoto, 2009. 1

[32] T. Schoenemann, F. Kahl, S. Masnou, and D. Cremers. A
linear framework for region-based image segmentation and
inpainting involving curvature penalization. IJCV, 2012. 1

[33] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition
of shapes by editing their shock graphs. PAMI, 2004. 2

[34] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker.
Hamilton-jacobi skeletons. IJCV, 48(3):215–231, 2002. 1

[35] K. Siddiqi and S. Pizer. Medial representations: mathemat-
ics, algorithms and applications, volume 37. Springer Sci-
ence & Business Media, 2008. 1, 2

[36] I. Sobel and G. Feldman. A 3x3 isotropic gradient operator
for image processing. 1968. 6

[37] P. Strandmark and F. Kahl. Curvature regularization for
curves and surfaces in a global optimization framework. In
EMMCVPR, pages 205–218. Springer, 2011. 1

[38] A. Tamrakar and B. B. Kimia. No grouping left behind:
From edges to curve fragments. In ICCV. IEEE, 2007. 7

[39] L. R. Williams and D. W. Jacobs. Stochastic completion
fields: A neural model of illusory contour shape and salience.
Neural Computation, 9(4):837–858, 1997. 1, 2, 4

[40] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global
stereo reconstruction under second-order smoothness priors.
PAMI, 31(12):2115–2128, 2009. 1

[41] S. Wright and J. N. Holt. An inexact levenberg-marquardt
method for large sparse nonlinear least squres. The Jour-
nal of the Australian Mathematical Society. Series B. Applied
Mathematics, 26(04):387–403, 1985. 6

http://ceres-solver.org
http://ceres-solver.org

