
International Journal of Computer Vision, vol. 96, no. 1, pp. 1–27, January 2012

Fast Approximate Energy Minimization with Label Costs

Andrew Delong · Anton Osokin · Hossam N. Isack · Yuri Boykov

Received: October 23, 2010 / Accepted: March 17, 2011 / Published online: July 15, 2011

Abstract The α-expansion algorithm has had a significant

impact in computer vision due to its generality, effective-

ness, and speed. It is commonly used to minimize energies

that involve unary, pairwise, and specialized higher-order

terms. Our main algorithmic contribution is an extension

of α-expansion that also optimizes “label costs” with well-

characterized optimality bounds. Label costs penalize a so-

lution based on the set of labels that appear in it, for example

by simply penalizing the number of labels in the solution.

Our energy has a natural interpretation as minimizing

description length (MDL) and sheds light on classical algo-

rithms like K-means and expectation-maximization (EM).

Label costs are useful for multi-model fitting and we demon-

strate several such applications: homography detection, mo-

tion segmentation, image segmentation, and compression.

Our C++ and MATLAB code is publicly available.*

Keywords Energy minimization · Multi-model fitting ·
Metric labeling · Graph cuts · Minimum description length

1 Some Useful Regularization Energies

In a labeling problem we are given a set of observations P
(pixels, features, data points) and a finite set of labels L (cat-

egories, geometric models, disparities). The goal is to assign

each observation p∈P a label fp ∈L such that the joint la-

beling f minimizes some objective function E(f).
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Fig. 1 Motion segmentation on the 1RT2RCR sequence [56]. Energy

(1) finds 3 dominant motions (a) but labels many points incorrectly. En-

ergy (2) gives coherent segmentations (b) but finds redundant motions.

Our energy combines the best of both (c).

Most labeling problems in computer vision and machine

learning are ill-posed and in need of regularization, but the

most useful regularizers often make the problem NP-hard.

Our work is about how to effectively optimize energies with

two such regularizers: a preference for fewer unique labels

in the solution (label costs), and a preference for spatial

smoothness (smooth costs). Figures 1, 2, and 3 suggest how

these criteria cooperate to give clean results.

Regularization combining smoothness and label costs

has a long history in vision going back to well known pa-

pers by Leclerc [41], Zhu & Yuille [63], and many others.

Until recently, however, label cost optimization problems

were not addressed by powerful combinatorial algorithms

that can guarantee certain optimality bounds and which are

widely used for other problems in vision. The main con-

tributions of our work (originally reported in [18]) are as

follows. We are first to describe a general label cost func-

tional (?) that depends on a specific subset of used labels,
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(a)

(b) (c)

Fig. 2 Planar homography detection on VGG (Oxford) Merton Col-

lege 1 image (right view). Energy (1) finds reasonable parameters for

only the strongest 3 models shown in (a), and still assigns a few incor-

rect labels. Energy (2) finds reasonable clusters (b) but fits 9 models,

some of which are redundant (nearly co-planar). Our energy (?) finds

both good parameters and labels (c) for 7 models.

rather than on a number of labels. Moreover, we propose

several combinatorial optimization algorithms with guaran-

teed optimality bounds for minimizing energies combining

data costs, smooth costs, and label costs.

Label costs. Start by considering a basic (unregularized)

energy E(f) =
∑

pDp(fp), where optimal fp can be deter-

mined trivially by minimizing over independent ‘data costs’.

Suppose, however, that we wish to explain the observations

using as few unique labels as necessary. We can introduce

label costs into E(f) to penalize each unique label that ap-

pears in f :

E(f) =
∑

p∈P
Dp(fp) +

∑

l∈L
hl ·δl(f) (1)

where hl is the non-negative label cost of label l, and δl(·)
is the corresponding indicator function

δl(f) def
=

{
1 ∃p : fp = l

0 otherwise.

Energy (1) balances data costs against label costs in a

formulation equivalent to the well-studied uncapacitated fa-

cility location (UFL) problem. Li [42] recently posed multi-

body motion estimation in terms of UFL. For multi-model

fitting, each label corresponds to a candidate model and la-

bel costs penalize overly-complex models, preferring to ex-

plain the data with fewer, cheaper labels (see Figure 1a).

Smooth costs. Spatial smoothness is a standard regularizer

in computer vision. The idea here is that groups of obser-

vations are often known a priori to be positively correlated,

and should thus be encouraged to have similar labels. Neigh-

bouring image pixels are a classic example of this. Such

pairwise priors can be expressed by the energy

E(f) =
∑

p∈P
Dp(fp) +

∑

pq∈N
Vpq(fp, fq) (2)

(a)

(b) (c)

Fig. 3 Unsupervised segmentation using histogram models. Energy (1)

clusters in colour space, so segments (a) are incoherent. Energy (2)

clusters over pixels and must either over-segment or over-smooth (b),

just as in [62]. Our energy (?) balances these criteria (c) and corre-

sponds to Zhu & Yuille [63] for segmentation.

where each Vpq penalizes fp 6= fq in some manner. If each

Vpq defines a metric, then minimizing (2) is known as the

metric labeling problem [11,32] and can be optimized ef-

fectively with the α-expansion algorithm.

This regularizer prefers spatially coherent segmentations,

but has no incentive to combine non-adjacent segments and

thus a tendency to suggest redundant labels in multi-model

fitting (see Figure 1b). Still, spatial smoothness priors are

important for a wide array of vision applications.

Our combined energy. We propose a discrete energy that

essentially combines the UFL and metric labeling problems.

E(f) =

data cost
︷ ︸︸ ︷
∑

p∈P
Dp(fp) +

smooth cost
︷ ︸︸ ︷
∑

pq∈N
Vpq(fp, fq) +

label cost
︷ ︸︸ ︷
∑

L⊆L
hL·δL(f) (?)

where the indicator function δL(·) is now defined on label

subset L as

δL(f) def
=

{
1 ∃p : fp ∈ L

0 otherwise.

Our energy actually generalizes label costs hl to label subset

costs hL, but one can imagine basic per-label costs through-

out for simplicity. Energy (?) balances two demonstrably

important regularizers, as suggested by Figure 1c. Figures 2

and 3 show other vision applications where our combined

label cost energy makes sense.

Related work. A number of recent publications have relied

on label costs in some form. For example, in [18] we pro-

posed our subset costs in (?) as a form of co-occurrence

cost in object recognition. This application was thoroughly

and independently developed by Ladický et al. [39], also

within an α-expansion framework but with a heuristic ex-

tension; see Section 7 for discussion. Others have indepen-

dently proposed label cost energies for specific applications.

For example, we learned from personal correspondence that

John Winn developed an extension of α-expansion to in-

stance cost potentials in 2004 that only appeared as part of
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a supervised part-based object recognition framework [30],

though his approach to deriving an algorithm is quite differ-

ent from ours1. Special case energy (1) corresponds to objec-

tive functions studied in vision by Torr [55] and in a number

of independent later works for specific applications [42,40,

4]. Our combined energy (?) has recently been extended to

convex continuous total variation (TV) formulations [61].

Label costs can be viewed as a special case of other

global interactions recently studied in vision, for example

by Werner [59] and Woodford et al. [60]. Werner proposed

a cutting plane algorithm to make certain high-order poten-

tials tractable in an LP relaxation framework. The algorithm

is very slow but much more general, and he demonstrates

global class size constraints for enforcing simple marginal

statistics in image segmentation. Our potential hl·δl(f) cor-

responds to a soft constraint that the number of variables

taking label l be zero; this cost is concave w.r.t. the num-

ber of variables taking l. Woodford et al. optimize energies

involving marginal statistics and they call these Marginal

Probability Fields (MPFs). They focus on a number of hard

cases with convex costs and propose specialized (but slow)

algorithms based on dual decomposition.

Our paper studies label costs from a general perspec-

tive, including discussion of multiple algorithms, optimal-

ity bounds, extensions, and fast special cases. Our work on

these algorithms was inspired by an array of generic model-

fitting applications in vision that benefit from label costs: ge-

ometric model fitting [55], rigid motion estimation [42,56],

MDL-based segmentation [63], finite mixture models [6].

This paper presents a number of synthetic and real exam-

ples illustrating generic applications for the label costs and

evaluating the proposed optimization techniques.

Our paper has the following structure. Section 2 presents

our extension to α-expansion and corresponding optimal-

ity bounds. We also analyze fast UFL heuristics for a spe-

cial case of (?) without smooth costs. Section 3 describes a

multi-model fitting algorithm based on our energy, and Sec-

tion 4 discusses connections to standard expectation maxi-

mization (EM) and K-means. Section 5 details our experi-

ments illustrating generic applications in vision. Section 6

empirically compares a number of alternative combinato-

rial optimization algorithms applicable to label cost ener-

gies. Besides the extended version of α-expansion designed

specifically for energy (?), we tested a number of alternative

methods based on standard α-expansion [11] for (2) with

additional heuristics addressing the label costs term. Sec-

tion 7 discusses applications of high-order label costs, more

related works, and possible extensions.

1 In [30] the algorithm is briefly described on page 6 and mixes bi-

nary and multi-label variables in a way such that we are unsure of the

exact method of implementation/proof, but the goal is clearly analo-

gous to a special case of our extended α-expansion for energy (?).

2 Fast Algorithms to Minimize (?)

Our main technical contribution is to extend the well-known

α-expansion algorithm [11] to incorporate label costs at each

expansion (Section 2.1) and prove new optimality guaran-

tees (Section 2.3). Section 2.4 reviews known results for the

‘easy’ case (1) with only data and per-label costs.

2.1 Expansion Moves with Label Costs

Minimizing the multi-label energy (?) is NP-hard in general

for |L| ≥ 3. The α-expansion algorithm [11] maintains a

current labeling f ′ and iteratively ‘moves’ to a better one

until no improvements can be made. At each iteration, some

label α ∈ L is chosen and variables fp are simultaneously

given a binary choice to either stay as fp = f ′p or switch

to fp = α. This key step (line 4 below) is called expansion

because label α is given a chance to grow arbitrarily. If each

Vpq is a metric [11], the best possible expansion move can

be computed efficiently by a single graph cut.

ALPHAEXPANSION [11]

1 f ′ := arbitrary labeling

2 repeat

3 for each α ∈ L
4 fα := arg minf E(f ) where f is an α-expansion of f ′

5 if E(fα) < E(f ′ )
6 f ′ := fα

7 until converged

We now describe the binary expansion step in more de-

tail. Let labeling f = {f1, . . . , fn} and let fα denote a fea-

sible α-expansion w.r.t. current labeling f ′. The possible la-

belings fα can be expressed one-to-one with binary indica-

tor variables x = {x1, . . . , xn} by defining

xp = 0 ⇐⇒ fα
p = f ′p

xp = 1 ⇐⇒ fα
p = α.

(3)

LetEα(x) be the energy corresponding to encoding (3) rela-

tive to f ′. The α-expansion algorithm computes an optimum

x
∗, and thereby fα, by a single graph cut.

For example, suppose energy E(f) is such that the opti-

mal expansion w.r.t. labeling f ′ is fα:

f ′ = γ γ ββαβ → γ ββαα α = fα

1 1 1 0 0 0 = x
∗ (4)

where 1 means x2 is fixed to 1. Here only f1 and f3 changed

to label α while the rest preferred to keep their labels. The

α-expansion algorithm iterates the above binary step until

finally Eα(x′) = Eα(x∗) for all α ∈ L.

Encoding Label Costs. The energy in example (4) was such

that f5 and f6 preferred to stay as label β rather than switch

to α. Suppose we introduce a cost hβ > 0 that is added to

E(f) if and only if there exists some fp = β. The binary en-

ergy for an expansion move must encode a potential reward
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Fig. 4 LEFT: Graph construction that encodes h−hx1x2· · ·xk when

we define xp = 1 ⇔ p ∈ T where T is the sink side of the cut.

RIGHT: In a minimal s-t cut, the subgraph contributes cost either 0 (all

xp = 1) or h (otherwise). A cost greater than h (e.g. ∗) cannot be

minimal because setting y = 0 cuts only one arc.

of hβ for replacing all f ′p = β with label α. If hβ is large

enough, the optimal expansion move for our small example

would affect f5 and f6:

f ′ = γ γαβ γ γαβ
1

γ ββγ ββ
5 6

→ γαα α α α = fα

1 1 1 0 1 1 = x
∗ (5)

Our main algorithmic contribution is a way to encode such

label costs into the expansion step and thereby encourage

solutions that use fewer labels.

Energy Eα(x), when expressed as a multilinear polyno-

mial, is a sum of linear and quadratic terms over x. For the

specific example (5), we can encode cost hβ in Eα by sim-

ply adding hβ − hβx1x5x6 to the binary energy. Because

this specific term is cubic and hβ ≥ 0, it can be optimized

by a single graph cut using the construction in [37].

To encode general label costs for arbitrary L ⊆ L and f ′,
we must optimize the modified expansion energy

Eα
h(x) = Eα(x) +

∑

L⊆L
L∩L′ 6=∅

(

hL−hL

∏

p∈PL

xp

)

+ Cα(x) (6)

where set L′ contains the unique labels in the current la-

beling f ′, and set PL = { p : f ′p ∈ L}. Term Cα simply

corrects for the case when α /∈ L′ and is discussed later.

Each product term in (6) adds a higher-order clique PL

beyond the standard α-expansion energy Eα(x). Freedman

and Drineas [24] generalized the graph construction of [37]

to handle terms c
∏

pxp of arbitrary degree when c ≤ 0.

This means we can transform each product seen in (6) into

a sum of quadratic and linear terms that graph cuts can still

optimize globally. The transformation for a particular label

subset L ⊆ L with |PL| ≥ 3 is

−hL

∏

p∈PL

xp = min
y

L
∈{0,1}

hL

[

(|PL|−1)yL −
∑

p∈PL

xpyL

]

(7)

where yL is an auxiliary variable that must be optimized

alongside x whenever hL > 0. Since each xpyL term has

non-positive coefficient, the overall binary energy can be

minimized by a single graph cut [8].
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Fig. 5 The alternate undirected graph construction corresponding to

Figure 4 may be easier to understand. The weights are found by repa-

rameterizing (8) such that x̄y and xȳ terms receive identical coeffi-

cients. Cut ∗ is not minimal w.r.t. auxiliary variable y.

To encode the potential (7) into an s-t min-cut graph

construction, we reparameterize the right-hand side such that

each quadratic monomial has exactly one complemented vari-

able (e.g. xȳ) and non-negative coefficient (arc weight). The

particular reparameterization we use is

−hL + hLȳL +
∑

p∈PL

hLx̄pyL (8)

where x̄ = 1 − x. Figures 4 and 5 show subgraphs corre-

sponding to (8) after cancelling the constant −hL using (7).

Subgraphs of this type have been used in vision before,

most notably the Pn Potts potentials of Kohli et al. [33]. Our

indicator potentials δL(·) are different in that, at the binary

step (6), each clique PL is determined dynamically from the

current labeling f ′ and is not expressed as such in the origi-

nal energy (?). A Pn Potts potential can be represented by a

combination label subset costs but not the other way around.

The idea is to apply ‘regional’ subset costs derived from the

coefficients of the Pn Potts potential. Section 7 describes

this transformation in detail.

A final detail for α-expansion is the case when label α

was not present in the current labeling f ′. The corrective

term Cα in (6) incorporates the label costs for α itself:

Cα(x) =
∑

L⊆L\L′

α∈L

(

hL − hL

∏

p∈P
x̄p

)

. (9)

If we find that x
∗ = 0 then label α was not used in f ′ and

it was also not worth expanding it in fα. The term (9) can

be encoded by a subgraph analogous to Figure 4, but the

following is more efficient: first compute optimal x∗ for (6)

without considering Cα, then explicitly add it to Eα
h(x∗) if

x
∗ 6= 0, and reject the expansion if the energy would in-

crease.

2.2 Swap Moves with Label Costs

Label costs can be trivially incorporated into αβ-swap by a

test-and-reject approach similar to above: before accepting a

standard swap move, compare its energy to the energy when

all β variables become α and vice versa, then apply the move

with minimum energy.
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2.3 Optimality Guarantees

In what follows we assume that energy (?) is configured2 so

that Dp ≥ 0, Vpq is a metric [11], and thus E(f) ≥ 0.

Theorem 1 If f∗ is a global minimum of energy (?) and f̂

is a local minimum w.r.t. α-expansion then

E(f̂) ≤ (2c+ d)E(f∗) +
∑

L⊂L
hL (10)

where

c = max
pq∈N

(
maxα 6=β∈L Vpq(α,β)
minγ 6=ζ∈L Vpq(γ,ζ)

)

, d = max
L⊂L
hL>0

|L|−1.

See Appendix A for the proof of (10) and also of (11) below.

These bounds suggest the following properties in practice:

– if label costs are modest we inherit an approximation

guarantee comparable to α-expansion,

– if label costs are arbitrarily large the bound is poor, and

– if the optimal solution includes label costs defined over

large subsets then the bound worsens.

Poor local minima are caused by the fact that α-expansion

allows only one label to expand at a time. Performing expan-

sions in greedy order (rather than arbitrary order) may help

empirically, but a hardness result of Feige [21] still applies

to our problem (discussed in Section 2.4).

For discussion, we note that (10) follows from a more

general a posteriori bound that does not assume Dp ≥ 0:

E(f̂) ≤ E(f∗)+ (2c−1)EV (f∗)+ dEH(f∗)+
∑

L⊆L\L∗
hL (11)

where EV (f) denotes the total smooth cost of labeling f ,

EH(f) total label cost, and L∗ the set of unique labels in

f∗. This holds for all f̂ and f∗, so the approximation error

is determined by the minimum of the three additive terms

above over all global optima f∗. The additive bound (11) is

informative in a way that the familiar multiplicative bound

E(f̂) ≤ 2cE(f∗) for α-expansion is not. To see why, con-

sider that the multiplicative bound for α-expansion is only

tight when the total data costED(f∗) = 0, and does not even

hold for ED(f∗) < 0. Yet, biasing the data costs with some

D′
p(·) := Dp(·) + εp for arbitrary constant εp affects nei-

ther the global optima nor the optimal expansion moves. The

α-expansion algorithm is indifferent to εp, and this prop-

erty distinguishes it from the isolation heuristic algorithm

for multi-terminal cuts [17]. The isolation heuristic is ap-

plicable to metric labeling when Vpq are Potts interactions,

also has multiplicative bound of 2, but can compute arbitrar-

ily bad solutions to multi-label problems depending on εp.

The comparative robustness of α-expansion is not reflected

in the multiplicative bound.

2 Adding an arbitrary constant to Dp(·) or Vpq(·, ·) does not affect

the optimal labeling, so finite costs can always be made non-negative.

Worst-case examples. The simplified bound (10) describes

the worst-case performance in special cases, but bound (11)

is tight more generally. The table below describes a worst-

case problem instance with P = {p, q} and L = {α, β, γ}.

We also assume a label cost hγ ≥ 0 and a Potts potential

that penalizes fp 6= fq with weight w > 0.

0

γ
β

α

hγ

∞ 0

∞

w w

p qdata costs

label cost

f̂ = (γ, γ )

f∗= (α, β)
(12)

This example has global optimum E(f∗) = w and so the

local minimumE(f̂) = 2w+hγ is tight with respect to (10).

Note that by adding positive εp to each Dp(·) our additive

bound (11) remains tight, unlike the multiplicative bound.

More generally we can design bad local minima from the

following n-variable problem structure. Let a, b, h ≥ 0 be

constants such that a= h+w wherew is still the weight of all

Potts potentials. Let N = {{1, 2}, {3, 4}, . . .} be the neigh-

bour set for Potts potentials. The data costs and label costs

in the table below have optimal labeling f∗={1, . . . , n}, yet

labeling f̂={n+1, n+1, n+2, n+2, . . .} is a local minimum

w.r.t. expansion moves. (A blank entry signifies Dp = ∞)

0

0

0

0

0

0

n labels

n variables

h

data costs

E(f∗) = h+ 1

2
nw

label subset costs

0

a a

a a

a a

b

E(f̂) = na+
∑
bb

b
(13)

We verify that f̂ is generally tight for bound (11) as follows

E(f̂) = na+
∑
b = nh+ nw +

∑
b

= E(f∗)+ 1
2nw+(n−1)h+

∑
b (14)

= E(f∗)+EV (f∗) + dEH(f∗) +
∑
b.

The above is tight for (10) when h = 0 and nearly tight

when w = 0 aside for one double-counted label cost h. This

example demonstrates how high-order label costs in the op-

timal labeling can worsen the approximation.

2.4 Energies with Only Per-label Costs

In the absence of smooth costs (Vpq = 0) and higher-order

label costs (hL = 0 for |L|> 1) our energy reduces to spe-

cial case (1) known as the uncapacitated facility location

(UFL) problem. The UFL problem assigns facilities (labels)

to each client (variable) such that the cost to clients is bal-

anced against the cost of ‘opening’ facilities to serve them.

In vision, the UFL problem has recently been applied

to motion segmentation by Li [42] and by Lazic et al. [40].

Each facility represents a potential rigid motion, and each
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client is a correspondence that must be assigned to one mo-

tion. The goal is then to choose a good subset of motions,

much like Figure 1a. Li optimizes the integer program cor-

responding to UFL by linear programming (LP) relaxation,

then rounds fractional facility variables to {0,1} in a straight-

forward manner. Because general LP solvers are slow, this

approach affords relatively few candidate models in prac-

tice. Li implements four application-specific heuristics to

aggressively prune out candidate models before building an

LP problem instance. Lazic et al. optimize the same en-

ergy using max-product belief propagation (BP), a message-

passing algorithm. More recently, Barinova et al. [4] used

UFL to model a class of object-detection problems and used

the same greedy algorithm as our concurrent work [18].

The general3 UFL problem is NP-hard by simple reduc-

tion from SET-COVER. A hardness result for SET-COVER

by Feige [21] implies that UFL cannot be approximated bet-

ter than (1−ε) ln |P| for ε > 0 in polynomial time unless the

complexity class NP ⊆ DTIME[nO(log log n)]. Kuehn &

Hamburger [38] proposed a natural greedy algorithm where

facilities are opened one at a time. Cornuejols et al. [15]

showed that the greedy algorithm provides a constant-factor

approximation bound, but only with respect to the gap be-

tween best and worst solutions; this bound is not informa-

tive when the range of costs involved are prohibitively large.

Hochbaum [29] later proposed a set-greedy algorithm that

achieves a ln |P|-approximation regardless of the costs in-

volved, which is optimal in the sense outlined by Feige.

Hochbaum also showed that neither greedy nor set-greedy

is strictly better than the other, and that the best choice de-

pends on the problem instances at hand. We present the orig-

inal greedy algorithm rather than the set-greedy algorithm.

Greedy UFL. In terms of our multi-label energy (1), the

greedy UFL algorithm starts from an empty set of labels and

greedily introduces one label at a time until no subsequent

label would allow the overall cost to decrease. Once a label l

is introduced, its cost hl is assumed to be paid for regardless

of subsequent steps. To express the greedy algorithm we in-

troduce a function of label subsets Z(S) where S ⊆ L. The

problem of minimizing E(f) in (1) can then be rewritten as

min
f
E(f) = min

S⊆L
Z(S) (15)

where Z(S) =
∑

p∈P
min
l∈S

Dp(l) +
∑

l∈S

hl (16)

and Z({}) is defined to be +∞. The overall algorithm is

described in pseudo-code below.

GREEDYUFL [38,16]

1 S := {}
2 while exists l /∈ S such that Z(S ∪ {l}) < Z(S)
3 j := arg minl/∈S Z(S ∪ {l}) − Z(S)
4 S := S ∪ {j}

The greedy algorithm runs in O(|L|2|P|) time for la-

bel set L and variable set P . Our C++ library implements

GREEDYUFL and it is 5–20 times faster than α-expansion

for energies of the form (1) while yielding similar results.

Besides this classic heuristic, other greedy moves have been

proposed for UFL such as the greedy-interchange and dy-

namic programming heuristics (see [15,16] for a review).

Babayev [3] and Frieze [25] noted in 1974 that the set

functionZ(S) is supermodular (as a minimization problem),

i.e. it can be shown that

Z(S ∪ {j, k}) − Z(S ∪ {k}) ≥ Z(S ∪ {j}) − Z(S). (17)

The greedy bound for UFL by Cornuejols et al. [15] then

follows from a general bound on minimizing supermodular

functions by Nemhauser et al. [46]. Note that introducing a

new label j /∈ S in step 3 does not consider the potential re-

ward for eliminating labels from S once j is made available.

This is in contrast to a j-expansion move with label costs,

where introducing j may be beneficial because existing la-

bels could be eliminated despite Z(S ∪ {j}) not reflecting

this in the classical algorithm. The 2-variable problem in-

stance below illustrates this difference for some constants

a > 1, b > 0. GREEDYUFL finds an arbitrarily poor en-

ergy of (2 + a)b whereas α-expansion with label costs finds

an energy of 3b regardless of initial labeling.

0 ∞

∞ 0

2b b ab

b

2b
α-expansion f̂= (α, β)γ

β

α

p q

greedy f̂= (α, γ)

data costs label costs

(18)

Our subset costs hL suggest a generalization of the clas-

sic UFL problem to add facility subset costs. Each subset

cost represents a shared setup cost for opening particular

set of facilities, after which the individual facilities can be

opened with their own costs hl for l ∈ L. The greedy algo-

rithm can be adapted to this generalized UFL problem, but

it can be shown that the new Z(S) corresponding to (16) is

no longer supermodular and so the approximation results of

Cornuejols et al. no longer apply.

Finally, the greedy algorithm may be enhanced by apply-

ing the tabu search meta-heuristic to the UFL problem [50].

Empirical results in [50] show that tabu search finds global

optima for many examples in the UFL literature at reason-

able increase in running time.

3 Working With a Continuum of Labels

Our experimental Section 5 focuses on multi-model fitting

problems, which are the most natural applications of en-

ergy (?). The goal is to estimate parameters for an unknown

3 Metric-UFL is a special case that can be approximated to within

a constant factor [49]. In our work we assume arbitrary costs Dp(·).

Unfortunately, some papers refer to metric-UFL simply as UFL.
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ground truth raw data proposals 1st iteration 5th iteration convergence
(50% outliers) (6 models) (6 models) (5 models)

Fig. 6 Re-estimation helps to align models over time. Above shows 900 raw data points with 50% generated from 5 line intervals. Random

sampling proposes a list of candidate lines (we show 20 out of 100). The 1st segmentation and re-estimation corresponds to Li [42], but only the

yellow line and gray line were correctly aligned. The decreasing energies in Figure 7 correspond to better alignments like the subsequent iterations

above. If a model loses enough inliers during this process, it is dropped due to label cost (dark blue line).

Line−fitting problem 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Expected (Average) Energy 
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E
n

e
rg

y

Sampling and Re−estimation Performance
(raw data, 15 runs each)
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Fig. 7 Energy (?′) over time for a line-fitting example (1000 points,

40% outliers, 6 ground truth models). Only label cost regulariza-

tion was used. Re-estimation reduces energy faster and from fewer

samples. The first point (•) in each series is taken after exactly one

segmentation/re-estimation, and thus suggests the speed of Li [42] us-

ing a fast greedy algorithm instead of LP relaxation.

number of models supported by noisy data with outliers. As

was first argued in [31], energies like (?) are powerful cri-

teria for multi-model fitting in general. However, there is

a technical hurdle with using combinatorial algorithms for

model fitting. In such applications each label represents a

specific model, including its parameter values, and the set

of all labels L is a continuum. In line fitting, for example,

L = R2. Practically speaking, however, the combinatorial

algorithms from Section 2 require a finite set L of labels

(models). Below we review a technique to effectively ex-

plore the continuum of model parameters by working with a

finite subset of models at any given iteration t.

PEARL Algorithm [31]

1 propose initial models L0 (e.g. randomly sample data points)

2 run α-expansion to compute optimal labeling f w.r.t. Lt

3 re-estimate model parameters to get Lt+1; t := t+1; goto 2

PEARL was the first to use regularization energies and

EM-style iterative optimization for geometric multi-model

fitting. Other geometric model fitting works have used sepa-

Segmentation problem 0 5 10 15 20

Expected (Average) Energy

0 5 10 15 Time (s)

E
n

e
rg

y

Sampling and Re−estimation Performance
(raw data, 10 runs each)

 

 

5 samples

15 samples

30 samples

60 samples

Fig. 8 Energy (?′) over time for image segmentation (222 × 183 pix-

els). Smooth cost and label cost were regularized together. The models

are 256-dimensional greylevel histograms. See Section 5.2 for experi-

mental details.

rate elements such as RANSAC-style random sampling [55,

42] or EM-style iteration [5], but none have combined them

in a single optimization framework. The experiments in [31]

show that their energy-based formulation beats many state-

of-the-art algorithms in this area. In other settings (segmen-

tation, stereo) these elements have been combined in various

application-specific ways [63,5,48,62].

Our paper suggests better algorithms for the expansion

step of PEARL (step 2), proposes a more general form of

label costs in energy (?), describes fast methods for the spe-

cial case without the spatial smoothness term, and discusses

a broader class of multi-model fitting problems in vision.

Review of PEARL for (?). For simplicity, we will discuss

PEARL in the context of geometric model fitting, as in [31].

Figure 6 illustrates the algorithm’s progression. Step 1 of

PEARL is to propose an initial set of models L0. Each pro-

posal can be generated by randomly sampling the smallest

subset of data points needed to define a geometric model,

exactly as in RANSAC [23]. A larger set of proposals L0

is more likely to contain models that approximate the true

ones. Of course, L0 will contain many incorrect models as
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well, but optimizing energy (?) over L0 (step 2) will auto-

matically select a small subset of labels from among the best

models in L0, see iteration 1 in Fig.6. In this example we

used only the label cost regularizer in (?) ignoring the spa-

tial smoothness term, and data fidelity Dp(l) represented an

orthogonal distance from point p to line l, see Sec.5.1.1. We

also fit one additional outlier model φ with Dp(φ) = const.

The initial set of selected models can be further improved

as follows. From here on, we represent model assignments

by two sets of variables: segmentation variables {fp} that

for each data point p specifies the index of a model from

the finite set L0, and parameter variables {θl} that specify

model parameters currently associated with each model in-

dex. Then, energy (?) is equivalent to

E(f ; θ) =
∑

p∈P
Dp(fp, θfp

) +
∑

pq∈N
Vpq(fp, fq, θfp

, θfq
)

+
∑

L⊆L
hL(θL)·δL(f). (?′)

For simplicity, assume that the smoothness terms in (?′) are

Potts interaction potentials [11] and the third term represents

simple per-label costs as in (1). Then, specific model param-

eters θl assigned to a cluster of points Pl = {p|fp = l} only

affect the first term in (?′), which is a sum of unary poten-

tials. In most cases, it is easy to compute a parameter value

θ̂l that locally or even globally minimizes
∑

p∈Pl
Dp(l, θl).

The re-estimated parameters {θ̂l} correspond to an improved

set of labels L1 that reduces energy (?′) for fixed segmenta-

tion f (step 3).

Now one can re-compute segmentation f by applying

the algorithms in Sec.2 to energy (?) over a new set of labels

L1 (step 2 again). PEARL’s re-segmentation and re-estimation

steps 2-3 reduce the energy. Iterating these steps generates a

sequence of re-estimated models L0,L1,L2, ... converging

to a better local minima of energy (?). In our experiments,

convergence is typically achieved in 5–20 iterations. In most

cases, iterating improves the solution significantly beyond

the initial result, see Fig.6.

Figure 7 shows effectiveness of re-estimation. Starting

with only 250 samples (blue plot), re-estimation converges

to better solutions than those computed from 1400 samples

without re-estimation (a first thick dot on the violet plot). For

this example, the algorithm needs at least 250 random sam-

ples to be stable, but more than 700 samples is redundant.

Figure 8 shows an analogous plot for color-model fitting in

unsupervised image segmentation, see Sec.5.2. Recall that

Li [42] does not re-estimate beyond the first iteration. His

solutions correspond to thick dots at the begging of each

plot in Fig.7. This approach would heavily rely on brute-

force random sampling to find solutions of the same quality

that we can find with only 250 samples.

Proposal heuristics. Re-estimation is a natural way to pro-

pose better models from existing ones because it applies to

any family of models for which a maximum-likelihood esti-

mator can be found. For example, the results in Figures 13

and 14 were both computed with re-estimation alone.

Re-estimation is by no means the only way to propose

new models. Another general heuristic is to fit a new model

to the inliers of two existing models, and then add this new

model to the candidate list; this ‘merge’ heuristic [58] gives

energy (?′) an opportunity to jump out of local minima when

computing optimal f . The algorithm in [31] finds lower en-

ergy solutions when new ’merge’ proposals are added (com-

pare α-SM and α-BM curves in our Section 6).

The most effective proposal techniques actually tend to

be class-specific and make use of the current solution. A

simple example for line fitting is to compute a ‘merge’ pro-

posal only for pairs of lines that are nearly collinear. Li [42]

uses a number of “guided sampling” heuristics specific to

motion estimation, but they are only used for the initial pro-

posals. In general, proposal heuristics can make our algo-

rithms in Section 2 more robust but this is not the point of

our work, so all our results use basic re-estimation only.

4 Relationship to EM and K-means

The main goal of this section is to relate our model fitting al-

gorithm to the standard expectation maximization (EM) and

K-means algorithms. Our discussion will focus on Gaussian

mixture models (GMM), but we will also consider a geomet-

ric example of fitting multiple lines to noisy data points with

outliers. To keep things simple for GMM, we use only data

terms and label cost terms, even though our full energy (?′)

was designed to handle smoothness priors as well.

A number of interesting observations about our model

fitting approach can be made:

– K-means minimizes a special case of our energy (?′),

– like K-means, we make hard assignments of models to

data points (in contrast to EM), and

– unlike K-means, our energy automatically removes un-

necessary models from the initial set of proposals.

Sections 4.1–4.3 elaborate on these points. Sections 4.4 and

4.5 show experimental results to help understand the rela-

tionship to EM and K-means. Note that our experiments are

meant to be illustrative. In particular, we do not suggest that

we have a state-of-the-art algorithm for GMM.

The main practical conclusion of this section is that hard

assignment works at least as well as soft assignment when

models have (nearly) non-overlapping spatial support.

We claim that many multi-model fitting applications in com-

puter vision satisfy this property, see Figs.1,2,3. Note that in

contrast to K-means or EM algorithm our method can also

use spatial smoothness prior that is often needed in vision.

In this section, however, we focus on a special case of (?′)

ignoring the smoothness term mainly to discuss the relation-

ships with the classical multi-model fitting methods.



Fast Approximate Energy Minimization with Label Costs 9

4.1 Standard Approaches to Finite Mixtures

Let some finite set of observed points X = {xp | p ∈ P}
be a mixture of independent samples taken from different

probability distributions. These distributions are described

by probability density functions Pr(x | θl) with distinct pa-

rameters from a set θ = {θl | l ∈ L}, where L is a finite set

of distribution indices (labels). A set of hidden (unobserved)

variables f = {fp∈L | p∈P} represent indices of specific

distributions that generated each data point. The probabil-

ity of sampling from each distribution is defined by a set of

mixing parameters ω = {ωl | l ∈ L} such that

Pr(fp = l) := ωl,
∑

l∈L
ωl = 1, ωl ≥ 0.

It can be shown that data points inX sampled in this manner

correspond to the standard mixture model density [6]

Pr(x |θ, ω) =
∑

l∈L
ωl ·Pr(x |θl).

The problem of estimating a mixture model is to esti-

mate parameters θ and mixing coefficients ω. We will mainly

focus on estimating GMM, i.e. mixtures of normal distribu-

tions Pr(x | θl) = N (x | µl, Σl) where model parame-

ters θl = {µl, Σl} are the mean and covariance matrix.

Objective functions for EM. The classic EM algorithm [6,

19] finds maximum likelihood (ML) estimators for GMM.

The ML objective is to find parameters θ and weights ω that

maximize the likelihood function

Pr(X |θ, ω) =
∏

p∈P

(
∑

l∈L
ωl ·Pr(xp |θl)

)

. (19)

As an internal algorithmic step, EM also computes respon-

sibilities Pr(fp = l | xp, θ, ω) to estimate which mixture

components could have generated each data point.

The EM algorithm can be generalized [6] to compute

maximum a posteriori (MAP) estimates of θ and ω maximiz-

ing the posterior Pr(θ, ω |X) ∝ Pr(X | θ, ω) Pr(θ) Pr(ω).
For example, a common MAP objective is

Pr(θ, ω |X) ∝
∏

p∈P

(
∑

l∈L
ωl ·Pr(xp |θl)

)

·
∏

l∈L
ωα−1

l (20)

which combines the ML objective (19) with a uniform prior

on θ and Dirichlet prior on weights ω

Pr(ω) = Dir(ω |α) ∝
∏

l∈L
ωα−1

l , α > 0. (21)

The Dirichlet prior is a uniform distribution for α = 1 but

for α < 1 it prefers to estimate ω such that most ωl are close

to zero. A smaller choice of α creates a stronger sparsity

effect on ω, and so α is called a sparsity parameter. In the-

ory, this prior should encourage mixture models where most

components are close to zero. According to [22] and in our

own experience (see Fig.12), negative values of α are often

necessary in practice to effectively remove redundant mod-

els. However, the Dirichlet prior is not a proper (integrable)

distribution for α ≤ 0.

Objective functions for K-means. Standard K-means can

also be seen as an ML approach to estimating mixture mod-

els. The elliptical4 K-means algorithm [51] maximizes the

following likelihood on the same probability space

Pr(X |f, θ) =
∏

p∈P
Pr
(
xp |θfp

)
. (22)

In contrast to EM, this approach directly computes labeling

f = {fp | p ∈ P} rather than responsibilities, while mix-

ing coefficients ωl are implicitly estimated as percentages of

points with fp = l. It is often said that K-means performs

hard assignment of models to data points, whereas EM per-

forms soft assignment leaving room for uncertainty in the

labeling f .

It is possible to derive a version of K-means that ex-

plicitly estimates mixing weights ω. Assuming that fp are

independent, one gets the following prior on the labeling

Pr(f |ω) =
∏

p∈P
Pr(fp |ω) =

∏

p∈P
ωfp

. (23)

Combining this prior with likelihood (22) and assuming non-

informative (uniform) priors for ω and θ, Bayes rule then

gives posterior distribution

Pr(f, θ, ω |X) ∝
∏

p∈P
ωfp

·Pr(xp |θfp
). (24)

Values of f, θ, ω maximizing this distribution are MAP es-

timates of these parameters. Like the standard K-means al-

gorithm, one can maximize (24) by iterating two steps: first

optimize over f for fixed θ, ω and then (independently) op-

timize over ω and θ for fixed f . We refer to this algorithm

as weighted (elliptical) K-means.

Discussion of priors. Instead of a uniform prior on ω used in

(24) one can add any informative prior for mixture weights.

For example, the Dirichlet prior (21) gives posterior

Pr(f, θ, ω |X) ∝
∏

p∈P
ωfp

·Pr(xp |θfp
) ·
∏

l∈L
ωα−1

l . (25)

For α < 1 this posterior encourages sparsity of weights ω.

Objectives (22) and (24) can be derived from (25) for other

values of α. Setting α = 1 gives the uniform prior on ω and

(25) reduces to the weighted K-means posterior (24). Set-

ting α very large (α → ∞) encourages equal weights ωl =
1
K

and so (25) reduces to the standardK-means likelihood (22).

4 The elliptical version of K-means explicitly estimates a covari-

ance matrix Σ so that each set of parameters is θl = {µl, Σl}.
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1 2 1 2

elliptical K-means (22,28) weighted ellpt. K-means (24,29)

Fig. 9 Mixture of two Gaussians where most data points were gener-

ated from the first component (ω1 >ω2). Standard K-means prefers

equal cluster sizes because it assumes ω1 = ω2, whereas weighted

K-means has no such bias.

Figure 9 shows how this difference can affect solutions. Stan-

dard K-means’ bias to equal-size components is another

way to understand its sensitivity to the choice of K.

As an alternative to Dirichlet prior, one can impose a

sparsity prior similar to the spike-and-slab distribution [45].

We consider a modification that we call step-and-slab prior

Pr(ω) = Sts(ω |γ) ∝
∏

l∈L
ψε(ωl |γ) (26)

where for some γ ∈ (0, 1) and infinitesimally small ε > 0

ψε(ωl |γ) :=

{

1, if ωl ≤ ε

γ, if ωl > ε.

Note that γ is a sparsity parameter analogous to α in (21)5.

Step-and-slab sparsity prior (26) yields posterior

Pr(f, θ, ω |X) ∝
∏

p∈P
ωfp

·Pr(xp |θfp
) ·
∏

l∈L
ψ(ωl). (27)

As discussed in Section 4.2, this posterior distribution ob-

tained from step-and-slab sparsity prior (26) corresponds to

posterior energy like (?′) with label costs h = log 1
γ

but with

no smooth costs. In contrast to the properties of the Dirich-

let prior discussed earlier, (26) can achieve arbitrarily strong

sparsity for small γ > 0 remaining a proper distribution.

4.2 Using Energy (?′) for Finite Mixtures

The standard K-means directly minimizes the negative-log

of the likelihood function (22), giving energy

E(f ; θ) = −
∑

p∈P
log Pr(xp |θfp

). (28)

Similarly, the weighted K-means algorithm minimizes the

negative-log of the posterior distribution (24)

E(f ; θ, ω) = −
∑

p∈P
log
(
ωfp

·Pr(xp |θfp
)
)
. (29)

5 Each mixture component weight ωl may have a separate sparsity

parameter γl in step-and-slab prior (26). This is similar to Dirichlet

prior generally defined by a sequence of parameters αl. We use uni-

form sparsity parameters γ and α only for simplicity.

Both of theseK-means energies are expressible as data terms

Dp in our energy (?′).
Note that posterior energy (29) is derived from the i.i.d.

assumption (23) on assignment variables fp. This assump-

tion holds when the sampling process does not have any co-

herence or constraints (e.g. occlusions). In some examples,

however, variables fp may be dependent. For example, pair-

wise interactions could be easily incorporated into a prior

for f yielding a posterior energy with the first and second

terms in (?′). Such a prior may be also useful for its regular-

ization effect. In the context of GMM estimation, however,

it makes more sense to regularize using some sparsity prior,

for example (26). The negative logarithm of the correspond-

ing posterior distribution (27) gives posterior energy

E(f ; θ, ω) = −
∑

p∈P
log
(
ωfp

·Pr(xp |θfp
)
)
+
∑

l∈L
log

1

γ
·[ωl > ε]

where [·] are Iverson brackets. The next theorem shows that

the last term in this energy is essentially the label cost.

Theorem 2 For sufficiently small ε > 0, the energy above

has the same global minimum as the label cost functional

E(f ; θ, ω) = −
∑

p∈P
log
(
ωfp

·Pr(xp |θfp
)
)
+
∑

l∈L
h·δl(f) (30)

for h = log 1
γ

. That is, minimization of label cost energy

(30) is equivalent to MAP estimation for posterior (27).

The proof of this theorem is in appendix B. Energy (30) is a

special case of (?′) with the simplest form of label cost regu-

larizer. We use (30) in our GMM experiments in Section 4.4

and line-fitting experiments in Section 4.5.

Note that the K-means algorithm for (28) is very sensi-

tive to initialization even if the right number of models K
is given, see Fig.11. If the number of given initial models

K is too large, the algorithm will over-fit these K models

to data, see Fig.10e. The extra label cost term in energy (30)

removes many problems associated with fixedK. We initial-

ize our method with a relatively large number of randomly

sampled models and minimization of (30) leads to a solu-

tion with a small number of good models, see Fig.6. Our ap-

proach based on energy (30) is fairly robust to local minima

and it is stable with respect to the set of randomly sampled

initial models as long as is it large enough.

4.3 Energy (?) as an Information Criterion

Regularizers are useful energy terms because they can help

to avoid over-fitting. In statistical model selection, various

information criteria have been proposed to fulfil a similar

role. Information criteria penalize overly-complex models,

preferring to explain the data with fewer, simpler models

(Occam’s razor [44]).
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For example, consider the well-known Akaike informa-

tion criterion (AIC) [1]:

min
Θ

−2 log Pr(X |Θ) + 2|Θ| (31)

where Θ is a model, Pr(X | Θ) is a likelihood function

and |Θ| is the number of parameters in Θ that can vary. This

criterion was also discussed by Torr [55] and Li [42] in the

context of motion estimation.

Another well-known example is the Bayesian informa-

tion criterion (BIC) [13,44]:

min
Θ

−2 log Pr(X |Θ) + |Θ|·log |P| (32)

where |P| is the number of observations. The BIC suggests

that label costs should be scaled in logarithmic proportion

to the number of data points or, in practice, to the estimated

number of observations per model. In contrast, AIC over-fits

as we add more observations from the true models. See [13]

for an intuitive discussion and derivation of BIC in general,

particularly Sections 6.3–6.4, and see Torr’s work [55] for

insights specific to vision.

4.4 Experimental Results for GMM Estimation

Figure 10 juxtaposes representative GMM estimation results

by basic EM (19), EM with Dirichlet prior (20), elliptical

K-means (28,29), and our approach to label cost energy

(30). For simplicity, Fig.10 represents EM’s “soft assign-

ment” at each point p using only one color corresponding

to the model with the highest responsibility, see appendix C.

The results for K-means and energy (30) show colors corre-

sponding to their “hard assignments”.

Implementation of (weighted) elliptical K-means max-

imizing (28,29) is fairly straightforward. Some details for

optimizing (19) and (20) via EM algorithm are provided in

appendix C. Since (20) automatically controls sparsity of the

solution, we can initialize this version of EM with a large

number of randomly sampled models. As discussed in [22],

this makes EM robust to initialization and helps to avoid lo-

cal minima.

Energy (30) represents a combination of the first and

the third terms in (?′). To minimize (30) we iterate PEARL

(Sec.3) in combination with the greedy optimization method

(Sec.2.4) for each expansion step. Similarly to [22] and to

our EM approach for (20), optimization of (30) via PEARL

avoids local minima when initialized with a large set of ran-

domly sampled models.

The second column in Figure 10 shows the results typi-

cal for both standard (28) and weighted K-means (29). The

two methods worked similarly on all tests in Figure 10 be-

cause all models there have approximately the same number

of inliers. Such examples can not reveal the bias of standard

K-means to equalizing mixing weights (see Fig.9).

One important conclusion from Figure 10 is that energy

(30) works well on all examples (a,b,e) where the models do

not have significant spatial overlap. This case is very com-

mon in computer vision problems where models occlude

each other rather than intersect.

If K-means and basic EM (19) were initialized with a

correct number of models, they also worked very well for

spatially non-overlapping models (a,b), however, EM was

more sensitive to outliers in (b). If basic EM and K-means

are initialized with a wrong number of models (e) they over-

fit these models to data, while Dirichlet-based posterior (20)

and label cost energy (30) keep the minimal number of nec-

essary models.

In general, EM handled intersecting models in (c) bet-

ter than K-means and our method with (30). Arguably, soft

assignments of models to data points help EM to deal with

such overlapping models. More severe cases of model mix-

ing in (d) were problematic for basic EM with a fixed num-

ber of models (19) due to local minima. However, EM for

Dirichlet-based posterior (20) could avoid such local min-

ima by selecting good models from a large initial sample.

In general, our approach with (30) and EM with (20)

benefit from larger number of initial proposals which in-

creases the chances that correct models are found. The 2

right columns in Figure 10 show the minimum number of

initial randomly sampled models (proposals) that these al-

gorithms needed to robustly generate good results.

4.5 Experimental Results for Geometric Model Fitting

Figures 11 and 12 show representative multi-line fitting re-

sults by basic EM (19), EM with Dirichlet prior (20), ellip-

tical K-means (28,29), and our approach to label cost en-

ergy (30). As before, we represent EM’s “soft assignment”

at each point using only the color of the model with the high-

est responsibility, see appendix C. The results for K-means

and energy (30) show colors of their “hard assignments”.

The data set for experiments in Figs.11-12 consists of

300 inliers for 5 lines and 180 outliers. Each line model

θ = {a, b, c, σ} includes noise variance σ. Log-likelihood

Dp( l ) = − logPr(xp|θl) for a given data point xp and

line θl assumes Gaussian orthogonal error and is given in

(33). We also fit one uniform outlier model φ with likeli-

hood Pr(xp|φ) = const > 0 where const was manually

tuned. Some additional general details about the experimen-

tal set-up for line fitting can be found in Sec.5.1.1. Opti-

mization of functionals (19), (20), (28), (29), and (30) via

EM, K-means, and PEARL is implemented as in the previ-

ous section. Some details for EM are in appendix C.

Figure 11 demonstrates that the standard K-means for

(28), (29), and basic EM algorithm for (19) are very sensi-

tive to local optima. Figure 12a shows that such local min-

ima are avoided by optimization algorithms that select a few
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EM algorithm (19) Elliptical K-means (28) or (29) PEARL w/ energy (30) EM w/ Dirichlet prior (20)

(a
)

n
o

o
v
er

la
p

5 initial models 5 initial models 50 initial models 50 initial models

(b
)

o
u
tl

ie
rs

6 initial models 6 initial models 50 initial models 50 initial models

(c
)

o
v
er

la
p
+

o
u
tl

ie
rs

3 initial models 3 initial models 50 initial models 50 initial models

(d
)

m
o
re

o
v
er

la
p

4 initial models 4 initial models 50 initial models 50 initial models

(e
)

ex
tr

a
m

o
d
el

s

7 initial models 7 initial models 50 initial models 50 initial models

Fig. 10 Each row shows how GMM algorithms behave on a particular example. This table is for illustrative purposes, and is not meant to be a

state-of-the-art comparison. (a) If models do not overlap then all algorithms work. (b) Most algorithms can handle uniform outliers by fitting an

extra model. (c) EM finds overlapping models thanks to soft assignment; hard assignment has bias towards isolated models. (d) Basic EM (19)

may easily get stuck in local minima with only a little more ambiguity in the data. But, EM with sparsity prior (20) can avoid such minima by

choosing solution from a large set of model samples. Bad solution by PEARL in this case of heavy spatial overlap between the models is due to

“hard assignments”. (e) Basic EM and K-means usually fail when given too many initial models, whereas PEARL with label cost energy (30) and

EM with Dirichlet-based posterior (20) keep the minimum number of models explaining the data. See Section 4.4 for discussion.

good lines from a large pool of initial models using sparsity

control: label costs in (30) or Dirichlet prior in (20). The

number of models generated by (30) and (20) is controlled

by parameters h and α, see Fig.12(b,c).

Our main conclusion from Section 4 is that “hard assign-

ments” have no particular disadvantages in cases where spa-

tial overlap between the observed models constitutes only

a small portion of their support. In image analysis prob-

lems (e.g. Figs.1,2,3) models often correspond to separate

objects with distinct spatial support. Objects normally “oc-

clude” each other rather than “intersect”. Thus, “hard as-

signments” should be appropriate for many multi-model fit-

ting problems in computer vision. In contrast to standard

“soft assignment” methods like EM, besides sparsity prior

(label costs) our general approach to model fitting can also

integrate a spatial smoothness prior - the second term in (?′)
that was ignored in this section. Figs.1,2,3 show that this

combination of regularizers is useful in vision.

5 Applications and Experimental Setup

The experimental setup is essentially the same for each ap-

plication: generate proposals via random sampling, compute

initial data costs Dp, and run the iterative algorithm from
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Elliptical K-means (28) or (29) Standard EM for (19)

(a
)

se
ed

1

E = 910 − log L = 819

(b
)

se
ed

2

E = 912 − log L = 862

(c
)

se
ed

3

E = 965 − log L = 905

Fig. 11 Standard K-means and EM with a fixed number of models

get stuck in local minima. The data points include (in total) 300 inliers

for 5 lines and 180 outliers. Here we assumed that the correct num-

ber of models is known and estimated K = 5 lines and one outlier

model. Solutions in (a)-(c) correspond to different initializations with

5 randomly sampled lines. The ground truth configuration has energy

E = 797 in (29) and log-likelihood − log L = 721 in (19).

Sec.3. The only changing components are the application-

specific Dp and regularization settings. Section 5.1 outlines

the setup for basic geometric models: lines, circles, homo-

graphies, motion. Section 5.2 describes the unsupervised im-

age segmentation setup.

5.1 Geometric Multi-model Fitting

Here each label l ∈ L represents an instance from a spe-

cific class of geometric model (lines, homographies), and

each Dp(l) is computed by some class-specific measure of

geometric error. The strength of per-label costs and smooth

costs were tuned for each application.

Outliers. All our experiments handle outliers in a standard

way: we introduce a special outlier label φ with hφ =0 and

Dp(φ) = const > 0 manually tuned. This corresponds to a

uniform distribution of outliers over the domain.

5.1.1 Simple synthetic examples (lines, circles, etc.)

Throughout this paper we used many illustrative examples

of multi-line fitting. Below we detail the corresponding set-

PEARL w/ energy (30) EM w/ Dirichlet prior (20)

(a
)

o
p
ti

m
al

sp
ar

si
ty

hl = 50 α = −4

(b
)

w
ea

k
sp

ar
si

ty

hl = 10 α = 10−6

(c
)

st
ro

n
g

sp
ar

si
ty

hl = 100 α = −9

Fig. 12 Label costs in (30) or sparsity prior in (20) significantly im-

prove the results on the data from Fig.11. Now a small number of mod-

els near ground truth (a) can be automatically computed from a large

pool of random initial models, as in Fig.6. In contrast to Fig.11, the

results are stable for different initializations as long as the set of initial

randomly sampled lines is large enough (e.g. 500 lines). Parameters h
and α control sparsity of the results (a-c).

up and discuss some additional synthetic tests with simple

geometric models. Our energy (?′) was motivated by appli-

cations in vision that involve images (Sections 5.1.2–5.3),

but synthetic examples with simple models help to under-

stand our energy, our algorithm, and their relation to stan-

dard methods.

Line fitting. Data points are sampled i.i.d. from a ground-

truth set of line segments (e.g. Fig.6), under reasonably sim-

ilar noise; outliers are sampled uniformly. Since the data is

i.i.d. we set Vpq = 0 in (?′) and use the greedy algorithm

from Section 2.4. We also use fixed per-label costs as in (30).

Keeping per-label costs independent of θ simplifies the re-

estimation of θ itself.

Figure 6 is a typical example of our line-fitting experi-

ments with outliers. In 2D each line model l has parameters

θl = {a, b, c, σ} where ax + by + c = 0 defines the line

and σ2 is the variance of data; here a, b, c have been scaled

such that a2 + b2 = 1. Each proposal line is generated by

selecting two random points from P , fitting a, b, c accord-

ingly, and selecting a random initial σ based on a prior. The

data cost for a 2D point xp = (xx
p, x

y
p) is computed w.r.t.
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orthogonal distance

Dp( l ) = − log
(

1√
2πσ

exp
(

−
(axx

p+bxy
p+c)2

2σ2

))

. (33)

Besides the greedy algorithm for (?′) without smooth-

ness, we also tested α-expansion for high-order label cost

potentials (Section 2.1). Not surprisingly, the greedy algo-

rithm was by far the best algorithm when smooth costs are

not involved. Greedy gives similar energies to α-expansion

but is 5–20 times faster.

Figure 7 shows the trend in running time as the num-

ber of random initial proposals is increased. For 1000 data

points and 700 samples, convergence took .7–1.2 seconds

with 50% of execution time going towards computing data

costs (33) and performing re-estimation.

Note that (33) does not correspond to a well-defined

probability density function. The density for unbounded lines

cannot be normalized, so lines do not spread their density

over a coherent span. Still, in line-fitting it is common to fit

full lines to data that was actually generated from line in-

tervals, e.g. [31,64]. The advantage of full lines is that they

are a lower-dimensional family of models, but when lines

are fit to data generated from intervals this is a model mis-

specification, causing discrepancy between the energy be-

ing optimized versus the optimal solution from a generative

viewpoint. Surprisingly, [31] showed that there are examples

where introducing spatial coherence (Vpq > 0) for i.i.d. line

interval data can actually improve the results significantly.

We hypothesize that, in this case, spatial coherence can be

trained discriminatively to counter the discrepancy caused

by fitting unbounded lines to line interval data.

Line interval fitting. Figure 13 shows three interval-fitting

results, all on the same data. Each solution was computed

from a different (random) set of 1500 initial proposals. Line

intervals require many more proposals than for lines because

intervals are higher-dimensional models. Each result in Fig-

ure 13 took 2–4 seconds to converge, with 90% of the ex-

ecution time going towards computing data costs and per-

forming re-estimation (in MATLAB).

We model an interval from point a to point b as an in-

finite mixture of isotropic Gaussians N
(
µ, σ2

)
for each µ

interpolating a and b. The probability of a data point appear-

ing at position x is thus

Pr(x |a, b, σ2) =

∫ 1

0

N
(
x | (1−t)a+ tb, σ2

)
dt. (34)

In two dimensions, the above integral evaluates to

1
4πσ2‖a−b‖ · exp

(

−
(

xx(by−ax)−xy(bx−ay)+aybx−axby

√
2σ‖a−b‖

)2)

·
(

erf
(

(x−b)·(a−b)√
2σ‖a−b‖

)

− erf
(

(x−a)·(a−b)√
2σ‖a−b‖

))

(35)

where x = (xx, xy) is and erf(·) is the error function.

seed=100 seed=101 seed=102

Fig. 13 We can also fit line intervals to the raw data in Figure 6. The

three results above were each computed from a different set L of ran-

dom initial proposals. See Section 5.1 for details.

Fig. 14 For multi-model fitting, each label can represent a specific

model from any family (Gaussians, lines, circles...). Above shows

circle-fitting by minimizing geometric error of points.

Given a set Xl = {xp : fp = l} of inliers for label l, we

find maximum-likelihood estimators θl = {a, b, σ} by nu-

merically minimizing the negative-log likelihood

E(Xl; a, b, σ) = −
∑

p

log Pr(xp |a, b, σ
2). (36)

Circle fitting. Figure 14 shows a typical circle-fitting re-

sult. Our circle parameters are center-point a, radius r, and

variance σ2. We model a circle itself as an infinite mixture

of isotropic Gaussians along the circumference. Proposals

are generated by randomly sampling three points, fitting a

circle, and selecting random σ based on some prior. We find

ML estimators numerically, much like for line intervals.

5.1.2 Homography Estimation

Energy (?′) can be used to automatically detect multiple ho-

mographies in uncalibrated wide-base stereo image pairs.

Our setup follows [31], so we give only a brief outline.

The input comprises two (static) images related by a fun-

damental matrix. We first detect SIFT features [43] and do

exhaustive matching as a preprocessing step; these matches

are our observations. The models being estimated are homo-

graphies, and each proposal is generated by sampling four

potential feature matches. Data costs measure the symmet-

ric transfer error (STE) [28] of a match w.r.t. each candi-

date homography. Our set of neighbors pq ∈ N is deter-

mined by a Delaunay triangulation of feature positions in the

first image. Re-estimation is done by minimizing the STE of

the current inliers via Levenberg-Marquardt [28]. Figures 2c

and 19 show representative results.
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Fig. 15 Unsupervised segmentation by clustering simultaneously over pixels and color space using Gaussian Mixtures (color images) and non-

parametric histograms (gray-scale images). Notice we find coarser clustering on baseball than Zabih & Kolmogorov [62] without over-smoothing.

For segmentation, our energy is closer to Zhu & Yuille [63] but our algorithm is more powerful than region-competition.

5.1.3 Rigid Motion Estimation

The general setup follows [31,42] and is essentially the same

as for homography estimation, except now each model is

a fundamental matrix F = [K ′ t]×K ′RK−1 corresponding

to a rigid body motion (R, t) and intrinsic parametersK [28].

Again, SIFT matches work as data points. Initial pro-

posals are generated by randomly sampling eight matching

pairs. Fundamental matrices [28] are computed by minimiz-

ing the non-linear SSD error using Levenberg-Marquardt.

Data costs measure the squared Sampson’s distance [28] of

a match with respect to each candidate fundamental matrix.

Figures 1(c) and 21 show representative results.

5.2 Image Segmentation

Our goal is to automatically partition an image into some

small number of regular segments with consistent appear-

ance. In contrast to superpixels, our segments can be of any

size and need not be contiguous. We propose to label the

image using the following form of energy (?′)

E(f,M) =
∑

l∈L

∑

p:fp=l

− logP (Ip |Ml)

︸ ︷︷ ︸

segment appearance

+λ
∑

pq∈N
[fp 6= fq]

︸ ︷︷ ︸

segments’ boundaries

+
∑

l∈L
hl·δl(f)

︸ ︷︷ ︸

segments’ labels

(37)

where parameter Ml describes probability distribution asso-

ciated with label l. For example, if values Ip are image in-

tensities/colors6 then vector Ml could represent an intensity

histogram or parameters of some family of distributions.

6 In general, Ip could represent any feature at pixel p, e.g. texture.

In what sense does segmentation energy (37) correspond

to the goals proclaimed at the beginning of the previous

paragraph? The third term sums penalties hl for each label

(model Ml) used in the image. This directly encourages a

small number of segments. The second term is a standard

expression for regularity of segment boundaries.

The information theory helps to show how the first term

in (37) yields segments with consistent appearance. Indeed,

following Kraft-McMillan theorem [44], any probability dis-

tribution P (I | M) corresponds to some coding scheme for

storing image intensities. Moreover, − logP (Ip | M) is the

number of bits required to represent any given intensity Ip
using coding scheme P (I |M). Therefore,

∑

p∈S

− logP (Ip |M)

is the number of bits required to describe the appearance of

any segment S ⊂ P using coding scheme M . When opti-

mizing over distribution M , the expression above yields the

shortest possible description of segment S, that is

|S| ·H(I | S) = inf
M

∑

p∈S

− logP (Ip |M)

where H(I|S) is the entropy of intensities in segment S.

Thus, optimization over all distribution models M makes

the first term of energy (37) equal

∑

l∈L
|Sl| ·H(I | Sl)

where Sl = {p : fp = l} is a segment with label l. This

quantity can be further optimized over segmentation (label-

ing) f . It achieves its minimum for any segmentation with

constant intensity segments where H(I|S) = 0. Such seg-

ments can be connected or disconnected. The size of the seg-

ments is also irrelevant. For example, single pixel segments
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are optimal for the quantity above. Alternatively, segments

could be connected components of the same intensity pix-

els. More generally, low values of the quantity above corre-

spond to segments with low variability of intensity, that is,

segments with consistent or homogeneous appearance.

In our segmentation experiments based on energy (37)

the appearance models Ml are 256-dimensional histograms

for greyscale images, and Gaussian mixtures in RGB space

for color images. Initial proposals for models Ml were gen-

erated by sampling small patches of the image, just like in

[63,62]. Similarly to [63,62] we iterated segmentation and

model re-estimation steps to optimize our energy over f and

M . We did not use segmentation-specific heuristics such as

merging or splitting the histograms. Figure 8 shows running-

time performance of our coordinate descent approach using

α-expansions to optimize (37) over f , as in Section 2.

Our results in Figures 3 and 15 show how energy (37)

balances regularity and homogeneity of segments. It is par-

ticularly instructional to compare image segmentation re-

sults in Figure 3(b)-(c). The result in (b) uses only spatial

regularization as in energy (2), see [62]. This approach over-

smoothes the segments even when the weight of the regu-

larization term is too small to merge all “zebra” parts. The

label costs term in (37) allows to obtain “zebra” (c) without

over-smoothing. In this case we do not depend on the spa-

tial regularization to merge all “zebra” parts and smoothing

weight λ can be significantly reduced.

The label costs term in (37) could be used to obtain seg-

ments with certain preferred appearance by assigning penal-

ties hl depending on Ml. Also note that a general version of

our label costs term in (?) uses subsets of labels. This allows

interesting new ideas for segmentation, as recently demon-

strated in [39] in the context of object recognition.

It should be emphasized that we are not first to suggest

energies with label costs for segmentation. A large amount

of related work on image segmentation is based on minimum

description length (MDL) principle [44] which provides in-

formation theoretic foundation for regularization energies

like (37). The MDL principle was first proposed for unsu-

pervised segmentation by Leclerc [41]. As further detailed

in our section 5.3.1 on lossless compression, specific tech-

nical realization of MDL principle in [41] is distinct from

ours. Leclerc derives energies somewhat different from (37)

and optimizes them using continuation technique similar to

graduated nonconvexity [7]. Further more, to simplify op-

timization [41] makes approximations, e.g. (2), that effec-

tively ignore the label costs term.

Zhu & Yuille [63] used a continuous image segmen-

tation energy inspired by MDL ideas of Leclerc. Specific

formulation in [63] is much closer to ours and their func-

tional is a continuous analogue of (37). They developed a

region competition algorithm based on local contour evolu-

tion and explicit merging of adjacent regions to address the

(a) (b)

(c) (d)

mean-shift [14] optimization of energy (38)

Fig. 16 Comparing mean-shift results (a,c) versus optimization of en-

ergy (38) using UFL heuristics (b,d).

label cost term. A subsequent algorithm by Brox & Weick-

ert [12] uses level sets to recursively partition the domain

until it no longer pays to add regions (labels). Ben-Ayed &

Mitiche [2] use multi-level sets to optimize an MDL-like

region merging prior. Our work is first to demonstrate appli-

cations of powerful α-expansion approach to MDL-based

image segmentation using energy (37).

To conclude this section we show some alternative ways

of using label cost energies in segmentation. Clustering of

image pixels represented by points (p, Ip) inX×Y ×Color
space was popularized for image segmentation by the mean-

shift algorithm [14]. Section 4 may suggest that label cost

energies can be used in this segmentation framework as a

regularization-based alternative to mean-shift. For example,

Fig.16 compares mean-shift and clustering using energy

E(f,M) =
∑

p∈P
− logP (p, Ip |Mfp

) +
∑

l∈L
hl·δl(f) (38)

where distributionsMl were fixed-covariance Gaussians. Op-

timization was done using fast UFL heuristics from Sec.2.

More sophisticated energy formulations are also possible.

5.3 Image Compression

Image compression is another application for label cost en-

ergy (?). We separately consider lossless and lossy com-

pression. It should be emphasized that we show straightfor-

ward coding schemes based on (?) only to demonstrate the

general idea. The main goal of our compression examples

is to illustrate energy (?) and minimization techniques from

section 2. More sophisticated coding schemes using (?) are

possible, but they are beyond the scope of this paper.
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5.3.1 Lossless Compression

Our approach to lossless compression uses energy (37) and

is technically identical to our segmentation approach in sec-

tion 5.2. The context of image compression, however, re-

quires some specific interpretation for the terms in (37). In

this section we further develop our information theoretic in-

terpretation of this energy. In particular, this is necessary for

section 5.3.2 on lossy compression .

On a conceptual level, we follow the same MDL prin-

ciple as Leclerc [41]. However, our descriptive language

is different and it leads to energies distinct from those in

[41]. First, instead of chain codes describing boundaries, we

describe interior regions of segments traversing all image

pixels in a raster-scan order. Second, Leclerc describes an

image as a combination of white noise with some piece-

wise constant or piece-wise smooth function. Instead, we

describe an image as a collection of segments with arbitrary

coding schemes. Finally, Leclerc’s goal is a piece-wise con-

stant or piece-wise smooth restoration. Our goal is to find

optimal segments and coding schemes describing images

exactly with the minimum number of bits.

To better motivate our approach, we will first make sev-

eral informal observations explaining why some appropri-

ate segmentation may help to get a shorter description of

an image. First of all, segments with consistent colors re-

quire fewer bits to represent their intensities. Second, seg-

ments with coherent boundaries require fewer bits to de-

scribe switches between coding schemes as image pixels

are scanned in a predefined order. Third, smaller number of

segments requites fewer coding schemes. Therefore, a small

number of spatially coherent and color-consistent segments

may help with compression. Note that the same segmenta-

tion criteria motivated energy (37) in section 5.2.

More formally, we will show that expression (37) corre-

sponds to the total number of bits required to represent an

image. We assume that each intensity is recorded in a raster-

scan order using coding schemeMl corresponding to pixel’s

label l = fp. We already showed in section 5.2 that the first

term in (37) is the number of bits required to store inten-

sities using coding schemes Ml. More bits are also neces-

sary to store all coding schemes them self. Clearly, the third

term in (37) can represent these extra bits. In general, differ-

ent coding schemes may vary in the number of bits required

to store them. For example, Gaussian mixture models with

larger number of components use more space. In this case,

parameter hl will depend on specific model Ml. In simpler

examples, models Ml may take the same number of bits d.

In this case parameter hl = d is a constant.

It remains to see that some additional bits (e.g. b) are

required to indicate a coding scheme change when image

traversal crosses a segment boundary. The second term7 in

(37) can represent such bits. In case if pixels are traversed

row-by-row, one should set λ = b and use horizontal 2-

neighbor system N . For column-by-column traversal, we

need vertical 2-neighborhood. In case we want to estimate

the number of bits for “model switching” without commit-

ting to one specific traversal direction, it makes sense to

average over two options. In this case one should use 4-

neighborhood with λ = b/2. It is also possible to account

for any diagonal traversal of an image by adding the corre-

sponding direction into the neighborhood system N . Inter-

estingly, Cauchy-Crofton formula [9] suggests the following

information-theoretic interpretation of the geometric length

of the segmentation boundary: it is a rotationally invariant

measure of the expected number of “model switching” bits

assuming that the direction of image traversal is chosen at a

random angle.

In order to illustrate one specific example, assume that

descriptions of all models Ml require the same number of

bits d and that we can use either row-by-row or column-

by-column traversals. Then, the average number of bits to

represent image I segmented according to labeling f is

B(f,M | I) =
∑

p∈P
− logP (Ip |Mfp

)

︸ ︷︷ ︸

compressed intensities

(39)

+
b

2

∑

pq∈N
[fp 6= fq]

︸ ︷︷ ︸

coding scheme switches

+ d
∑

l∈L
δl(f)

︸ ︷︷ ︸

coding schemes description

where N is a 4-neighborhood. This is a special case of en-

ergy (37). Minimizing (39) for given I over segmentation f

and coding schemes M yields a solution for the minimum

description length lossless compression of image I .

5.3.2 Lossy Compression and RD Optimization

We generalize ideas from the previous section to further il-

lustrate applications for label costs functionals like (?). This

section follows Shannon’s rate-distortion (RD) optimization

approach to lossy image compression, see [27,47].

Minimization of energy (39) gives the optimal number

of bits for storing image I without loss of information. The

RD approach is to find some image Ī sufficiently close to I

that compresses better than I . Formally, this problem can be

written as the following constrained optimization

min
f,M,Ī

B(f,M | Ī)
︸ ︷︷ ︸

compression rate

s.t.
∑

p∈P

(
Ip − Īp

)2

︸ ︷︷ ︸

distortion measure

≤ ε

7 Note that the second term in (37) is standard piece-wise constant

(a.k.a. Potts) model of spatial smoothness in MRF literature.
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σ = 100, R = 4.07 σ = 250, R = 2.41 σ = 500, R = 1.98 σ = 1000, R = 1.75 σ = ∞, R = 1.11

σ = 100, R = 13.36 σ = 250, R = 8.33 σ = 500, R = 5.83 σ = 1000, R = 4.18 σ = ∞, R = 2.08

σ = 100, R = 12.87 σ = 250, R = 5.60 σ = 500, R = 3.89 σ = 1000, R = 2.71 σ = ∞, R = 1.57

σ = 100, R = 12.00 σ = 250, R = 4.49 σ = 500, R = 3.25 σ = 1000, R = 2.46 σ = ∞, R = 1.29

Fig. 17 Optimal “distortion” images Ī for various values of parameter σ in (40). These images Ī correspond to the best compression rate among

all images with the same distortion measure. Since optimal Ī = I for σ = ∞, the right column shows the original images (lossless compression).

Values of R show compression ratios: R = |P|·H(U)

arg minf,M B(f,M|Ī)
where H(U) is the entropy of the uniform distribution over the range of

intensities.

where ε fixes the distortion level. If ε = 0 then Ī = I and the

problem reduces to lossless compression (39). Higher levels

of distortion ε > 0 give solutions Ī with better compres-

sion. Note that besides the squared-error distortion measure

above, Hamming distortion measure is also common in RD.

Following the discrete version of Lagrange method [20],

the constrained problem above is closely related to uncon-

strained optimization of generalized Lagrange function

E(f,M, Ī) = σ
∑

p∈P

(
Ip − Īp

)2

︸ ︷︷ ︸

distortion measure

+B(f,M | Ī)
︸ ︷︷ ︸

compression rate

(40)

with parameter σ instead of ε. In particular, an optimal so-

lution for (40) for any fixed value of Lagrange multiplier

σ also solves the constrained problem above for some ε.
Following the discussion after Theorem 1 in [20], the un-

constrained minimum solution (f∗,M∗, Ī∗) for energy (40)

achieves the lowest compression rate which is possible with-

out exceeding this solution’s distortion measure8. Figure 17

shows the balance of compression and distortion for the op-

timal solutions Ī corresponding to different σ in energy (40).

Similarly to other model fitting problems in this paper,

we optimize (40) in a coordinate descent fashion iterating

f , M and Ī optimization steps. We initialize Ī = I . Note

that f and M steps are analogous to (39) since Ī is fixed.

8 A similar discussion also appears after Proposition 1(b) in [36].

Optimization over Ī for fixed f and M requires some clari-

fication. Since variables Īp appear only in the unary terms in

(40), optimization over Īp can be done very efficiently. For

example, one can compute look-up tables T (· | l) for every

currently supported model Ml (label l)

T (x | l) = arg min
i

(

σ (x− i)
2 − logP (i |Ml)

)

giving optimal value Īp = T (Ip | fp) for any pixel p.

Figure 17 presents the results obtained in this fashion.

All intensities are normalized to the range [0, 1]. We used

ad-hoc values for parameters b = 12 and d = 1000 and

varied the value of σ. For each optimal “distorted” image Ī

we show the corresponding compression ratioRwhich is the

ratio of the the length of the single-model uniform encoding

of I to the optimal encoding length for Ī .

Figure 18 shows rate-distortion and ratio-distortion func-

tions which are common compression analysis tools ever

since Shannon introduced RD approach in the 1940s. Each

Ī obtained for certain σ in (40) corresponds to some optimal

compression rate B(f,M | Ī)/|P| and average distortion

measure
∑

p∈P
(
Ip − Īp

)2
/|P|. Rate-distortion function in

Fig.18(a) plots these values on the vertical and horizontal

axis for different solutions Ī as σ varies. Similarly, Fig.18(b)

plots compression ratio R versus distortion.

We should emphasize again that our compression results

only illustrate the spectrum of applications for label costs

energies (?). More advanced description languages can fol-
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Fig. 18 Compression analysis plots for the results in Fig.17. The left-

most points correspond to lossless compression (σ = ∞).

low the basic ideas in this section. Label costs naturally rep-

resent the length of coding schemes in any language.

6 Empirical Performance of Algorithms for (?′)

This section presents an empirical comparison for several

algorithmic variants to minimizing energy (?′) where both

smooth costs and label costs are present. In particular, we

compare algorithms from section 2 and several algorithms

originally designed for spatial regularization functional (2)

which can be applied to (?′) using some merging heuristics

as in [31]. Our goal is to compare running times and energy

values obtained on real examples in the context of geometric

model fitting described in Sec.5.1.

Figure 19 illustrates our first homography fitting exam-

ple (see Sec.5.1.2). The curves in (d) show how the energy

(?′) decreases in 50 different tests running PEARL with the

extended α-expansion algorithm from section 2. Each test

depends on some initial set of randomly samples models.

The algorithm can converge to different solutions illustrated

in Figure 19(a-c). Better results as in (a) correspond to so-

lutions with lower energy values, and worse results as in (c)

correspond to poor energy values. The black curve in Fig.20

is the average of 50 curves in Fig.19(d). This section uses

such average curves to compare different combinatorial al-

gorithms for minimizing label cost energies. In addition to

homography fitting results in Fig.20, we also use two rigid

motion estimation examples (see Sec.5.1.3) to compare sim-

ilarly obtained average performance curves in Fig.21.

Now we briefly review combinatorial algorithms com-

pared in this section. In contrast to other tested methods, the

extended α-expansion algorithm from section 2 directly ad-

dresses label costs in (?) without any extra heuristics. We

test two versions of the algorithm: α+ (basic) consistently

iterates expansion steps over all labels, and α++ (adaptive)

removes labels corresponding to empty expansions until the

“last” iteration validating local minima with respect to all

labels. Both versions have the same optimality guarantees

(see Sec.2). Our empirical results in Figures 20 and 21 sug-

gest that α+ and α++ find solutions with comparable energy

values. The adaptive method α++ converges faster.

(a) Solution A

(b) Solution B

(c) Solution C
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(d) energy plots for 50 different sets of sampled initial models

Fig. 19 Homography fitting example (“Stairs”). Different runs of the

algorithm (PEARL with α++) in (d) converge to solutions with differ-

ent energy values depending on a specific initial collection of randomly

sampled models. As shown in (a-c), lower energy solutions correspond

to better practical results.
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Fig. 20 Homography fitting example (“Stairs”) for different algo-

rithms minimizing energy (?): α++ and α+ are two versions of ex-

tended α-expansion from Sec.2; αβ+ is a straightforward modifica-

tion of the standard αβ-swap [11]; α-SM and α-BM are standard

α-expansions with different merging heuristics [31]. The plots show

values of energy (?′) obtained after each iteration of segmentation and

re-estimation, see Sec.3. As in PEARL [31], the labels are initialized

by randomly sampling 1000 models. Each plot above is obtained by

averaging energy curves for 50 different initializations as in Fig.19(d).

Other tested methods are based on standard algorithms

for energy (2) adapted to label cost in (?) using some heuris-

tics. For example, [31] uses basic α-expansion [11] for the

first two terms in (?) and adds a separate merging step to

account for the label costs. Each merging step tries to re-

place some pair of labels A and B in the current solution

with one label C. Two segments A = {p : fp = A} and

B = {p : fp = B} are merged if and only if assigning some

label C to combined segment A ∪ B lowers overall energy

(?). Note that merging decreases the second and the third

terms in (?) but it can increase the first (data) term. Iterating

standard α-expansions with merging steps is guaranteed to

decrease energy (?) after each iteration. Note that separate

merging steps for minimizing MDL-based functionals like

(?) were also used in [41,63] in the context of continuation

methods and variational approaches.

We tested two merging heuristics [31]: α-SM (simple

merge) tries to merge two segments usingC = A orC = B,

and α-BM (best merge) tries the optimal label C for two cur-

rent segments A = {p : fp = A} and B = {p : fp = B}

C∗ = arg min
C

∑

p∈A∪B
Dp(C).

Due to extra optimization procedure α-BM is slower than

α-SM but it generates lower energy values, see Figs.20,21.

We also note that the standard αβ-swap algorithm [11]

was originally designed for smoothness energy (?) but can

be easily extended to label cost energy (?). At each step the

swap algorithm works with two fixed labels A and B and

a region A ∪ B. Only two trivial outcomes of a swap move

change the label costs: when all nodes in A∪B are assigned

either label A or B. The standard swap method does not ac-

count for the label cost term in (?). Yet, it is easy to compare

the outcome of an optimal αβ-swap move with two trivial

solutions and choose one with the lowest value of energy

(?). We use symbol αβ+ to refer to this algorithm and its

empirical results in Figure 20.

While discrete energy (?) could be addressed by many

combinatorial optimization techniques (e.g. [26,41,35]) or

their modifications, our empirical evaluation is focused on

graph cut methods that we consider more promising due

to optimality guarantees associated with them. The experi-

ments in Figure 20 show that α++, an adaptive version of ex-

tended α-expansion in Sec.2, generated better quality solu-

tions faster than other methods. Standard α-expansion with

a “best merge” heuristic α-BM [31] obtained better energy

values in Fig.21 but it was also much slower. Comparing

α-BM with α-SM (“simple merge” version of the same algo-

rithm) suggests that α-BM benefits from adaptive new model

proposals. In fact, α-BM is the only method in our tests that

used adaptively generated new proposals in addition to ba-

sic model re-estimation. Note that rigid motion models in

Fig.21 have higher dimensionality than (planar) homogra-

phies in Figs.19-20. Generating label proposals adaptively

could be a practical mechanism improving exploration of

larger label spaces of higher-dimensions.

Our general practical observation is that often all tested

algorithms α++, α+, αβ+, α-SM, α-BM generate comparable

results. In most cases, however, it is easier to use α++ as it

is fast, robust, and does not rely on extra merging heuristics.

In higher dimensional model-fitting problems the combina-

tion of PEARL and α++ may further benefit from additional

application-specific mechanisms adaptively generating new

model proposals.

7 Discussion

The potential applications of our algorithm are nearly as

broad as for α-expansion. Our new algorithm can be applied

whenever observations are known a priori to be positively

correlated, for example in space or in time, whereas clas-

sical mixture model algorithms (Section 4) are largely de-

signed for i.i.d. data.

Our C++ code and MATLAB wrapper are available at

http://vision.csd.uwo.ca/code/. Besides minimizing

general energy (?), the code is further optimized in two im-

portant special cases:

1. when the energy reduces to (1) the solution is computed

by the greedy UFL algorithm (Section 2.4), and

2. when only a small fraction of labels are feasible for any

given data point (e.g. geometric models; labels localized

to a patch) we support “sparse data costs” to dramati-

cally speed up computation.9

Our new α-expansion code optionally uses a simple strategy

to invest expansions mainly on ‘successful’ labels. This is

9 Sparse data costs were not used in our experiments.
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(a) rigid motion example 1 (b) rigid motion example 2

Fig. 21 Rigid motion estimation examples (Vidal’s data set [56]) comparing different algorithms minimizing energy (?): α++, α+, α-SM, α-BM.

Algorithm αβ+ generated solutions with similar energy values but it was much slower than the other methods. Thus, we chose not to show its

energy curves for the rigid motion estimation examples above.

often faster, but can be slower, so we suggest selecting an

expansion scheme (adaptive vs. standard cycle) empirically

for each application.

Our energy is quite general but this can be a disadvan-

tage in terms of speed. The α-expansion step runs in polyno-

mial time for fixed number of positive hL terms, but higher-

order label costs should be used sparingly. Even the set of

per-label costs {hl} slows down α-expansion by 40–60%,

but this is still relatively fast for such difficult energies [52].

This slowdown may be because the Boykov-Kolmogorov

maxflow algorithm [10] relies on heuristics that do not work

well for large cliques, i.e. subgraphs of the kind in Figure 4.

Even if faster algorithms can be developed, our implementa-

tion can test the merit of various energies before one invests

time in specialized algorithms.

Category costs. Our high-order label costs (on subsets of

labels) seem to be novel, both in vision and in terms of

the UFL problem, and can be thought of as a type of co-

occurrence potential first proposed in [18]. A natural appli-

cation is to group labels in a hierarchy of categories and as-

sign a category cost to each. This encourages labelings to

use fewer categories or, equivalently, to avoid mixing labels

from different categories (e.g. kitchen, office, street, beach)

unless the local evidence is strong enough. With respect to

object recognition/segmentation with co-occurrence, similar

costs were independently developed by Ladický et al. [39].

We foresee further applications for high-order label costs in

multi-motion and multi-homography estimation.

Relation to Ladický et al. [39]. The application in [39]

is object recognition with co-occurrance statistics. They are

motivated by the principle of parsimony: if several segmen-

tations explain the image equally well, then the one that re-

quires the fewest object labels should be preferred. They

develop an extension to α-expansion that is equivalent to

ours, but they also consider energies outside the class of co-

occurrence potentials (subset costs) that we defined earlier

in [18]. However, their class of energies is not submodular

with respect to expansion and so they apply a heuristic with

no guarantee of finding an optimal expansion move for en-

ergies outside our class.

Regional label costs. We can generalize the concept of la-

bel costs by making them spatially localized. The label cost

term in energy (?) could be expressed more generally as

∑

P⊆P

∑

L⊆L
hP

L·δL(fP ) (41)

where our basic energy (?) is a special case that assumes

hP
L = 0 for all non-global cliques P ( P . (Note that the
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test-and-reject approach to incorporate Cα in Section 2.1 is

no longer ideal for this more general case above.)

Such potentials amount to regional label cost terms. Re-

gional and high-order label costs are useful together when

labels belong to known categories with specific location pri-

ors, such as “pay a fixed penalty if any label from {sky,

cloud,sun} appears in the bottom of an image.”

Relation to Pn Potts [33]. The Pn Potts potential ψP (fP )

is defined on clique P ⊆ P as

ψP (fP ) def
=

{

γα if fp = α ∀p ∈ P
γmax otherwise

where γα ≤ γmax for all α ∈ L. This potential encodes a

label-specific reward γmax−γα for clique P taking label α

in its entirety, and acts either as simple high-order regular-

ization (all γα = const) or as a form of high-order data cost

(label-specific γα).

Let ᾱ denote the set of all labels except α, i.e. the set

L \ {α}. A regional label subset cost over clique P can en-

code the Pn Potts potential in energy (?) as follows:

1. Set cost hP
ᾱ := γmax − γα for each α ∈ L.

2. Add constant (1−|L|)γmax +
∑

αγα to the energy.

Each regional label cost hP
ᾱ is non-negative by definition of

ψP (·), thus a Pn Potts potential can be expressed as a sum

of high-order label costs.

The Pn Potts potential and its robust generalization [34]

were designed to encourage consistent labelings over spe-

cific regions in an image. A special case of our potentials is

very closely related to the robust variant: a basic per-label

potential hl ·δl(f) can be expressed as a specific (concave)

Robust Pn Potts potential. Besides significant conceptual

and motivational differences, the main technical difference

is that our construction makes no reference to a “dominant

label.” By constructing a two-label Robust Pn Potts poten-

tial at each dynamic clique PL in our binary expansion step,

we can encode an arbitrary concave penalty on the number

of variables taking labels from a specific subset of labels.

This generalizes our high-order potentials δL(·) if needed.

Learning label costs. Our paper studied label costs in an

unsupervised setting where parameters are chosen based on

information criteria or tuned manually. It is important to note

that energy (?) and the α-expansion-based inference algo-

rithm can be used in supervised settings as well. The label

cost terms are included in energy (?) linearly and can thus

be learned by max-margin methods [54,57]. This approach

was recently used for CRF learning, e.g. [53].
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A - Optimality Results

Proof of Theorem 1. The proof idea follows Theorem 6.1 of [11]. Let

us fix some α ∈ L and define

Pα
def
=
{

p ∈ P : f∗
p = α

}
. (42)

We can produce a labeling fα within one α-expansion move from f̂
as follows:

fα
p =

{

α if p ∈ Pα

f̂p otherwise.
(43)

Since f̂ is a local optimum w.r.t. expansion moves we have

E(f̂) ≤ E(fα). (44)

Let E(·)|S denote a restriction of the summands of energy (?) to

only the following terms:

E(f)|S =
∑

p∈S

Dp(fp) +
∑

pq∈S

Vpq(fp, fq).

We separate the unary and pairwise terms of E(f) via interior, exterior,

and boundary sets with respect to pixels Pα:

Iα = Pα ∪ { pq ∈ N : p, q ∈ Pα }
Oα = P \ Pα ∪ { pq ∈ N : p, q 6∈ Pα }
Bα = { pq ∈ N : p ∈ Pα, q 6∈ Pα } .

The following facts now hold:

E(fα)|Iα = E(f∗)|Iα (45)

E(fα)|Oα = E( f̂ )|Oα (46)

E(fα)|Bα ≤ cE(f∗)|Bα . (47)

Inequality (47) follows from the fact that V (fα
p , fα

q ) ≤ cV (f∗
p , f∗

q )
for any pq ∈ Bα.

Let EH denote the label cost terms of energy E. Using (45), (46)

and (47) we can rewrite (44) as

E( f̂ )|Iα + E( f̂ )|Bα + EH( f̂ ) (48)

≤ E(fα)|Iα + E(fα)|Bα + EH(fα) (49)

≤ E(f∗)|Iα + cE(f∗)|Bα + EH(fα) (50)

Depending on f̂ we can bound EH(fα) by

EH(fα) ≤ EH(f̂) +
∑

L⊆L\L̂
α∈L

hL (51)

where L̂ contains only the unique labels in f̂ . We also let L∗ denote

the unique labels in f∗.

To bound the total energy we sum expressions (48) and (50) over

all labels α ∈ L∗ to arrive at the following:

∑

α∈L∗

(

E( f̂ )|Iα + E( f̂ )|Bα

)

(52)

≤
∑

α∈L∗

(

E(f∗)|Iα +cE(f∗)|Bα

)

+
∑

L⊆L\L̂

hL|L∩L∗|.

Observe that, for every pq ∈ B=
⋃

α∈LBα, the term Vpq(f̂p, f̂q)
appears twice on the left side of (52), once for α = f∗

p and once for

α = f∗
q . Similarly every V (f∗

p , f∗
q ) appears 2c times on the right side

of (52). Therefore equation (52) can be rewritten as

E(f̂) ≤ E(f∗) + (2c − 1)EV (f∗) − E(f̂)|B (53)

+ EH(f̂) −EH(f∗) +
∑

L⊆L\L̂

hL|L∩L∗|.
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Observe that the second line of (53) involving label costs is equal to

∑

L⊆L\L∗

L∩L̂6=∅

hL +
∑

L⊆L\L̂

L∩L∗6=∅

hL

(
|L∩L∗| − 1

)
. (54)

The right-hand sum includes label costs that f∗ pays but that f̂ does

not. Expression (54) can be bounded by

≤
∑

L⊆L\L∗

L∩L̂6=∅

hL + d ·
∑

L⊆L\L̂

L∩L∗6=∅

hL, where d = max
L⊂L
hL>0

|L| − 1 (55)

≤
∑

L⊆L\L∗

hL + dEH(f∗) (56)

where d is understood to be zero if all hL = 0. Combining (53) with

(56) and using the fact that dEH(f∗) ≥ 0 we can simplify the bound

as

E(f̂) ≤ E(f∗) + (2c−1)EV (f∗) + dEH(f∗) +
∑

L⊆L\L∗

hL

(57)

≤ (2c + d)E(f∗) +
∑

L⊂L

hL. (58)

We have derived a posteriori bounds (53) and (57) with respect to any

particular f̂ and f∗. Assuming Dp ≥ 0 we have a priori bound (58).

�

B - Equivalence of Label Costs and Sparsity Prior

Proof of Theorem 2. Assuming h = log 1
γ

, the negative logarithm of

distribution (27) gives the following posterior energy

E′(f ; θ, ω) = −
∑

p∈P

log
(
ωfp

· Pr(xp |θfp
)
)
+
∑

l∈L

h·[ωl > ε]

= −
∑

l∈L

kl log ωfp
−
∑

p∈P

log Pr(xp |θfp
) +

∑

l∈L

h·[ωl > ε]

(59)

where kl = #{p : fp = l} is the number of pixels assigned to label

l. We will show that for ε ≤ γ|L|/ |P||P| posterior energy E′ in (59)

has the same minimum as label cost energy E from (30)

E(f ; θ, ω) = −
∑

l∈L

kl log ωfp
−
∑

p∈P

log Pr(xp |θfp
) +

∑

l∈L

h·δl(f)

(60)

that differs from (59) in the last term.

Assume that the minimum of E in (60) is achieved at f̂ , ω̂, θ̂. It is

easy to check that at any optimal solution of E we have ωl = kl/ |P|.

Since ε < 1/|P| then [ω̂l > ε] = δl(f̂). Thus, E′(f̂ , ω̂, θ̂) =

E(f̂ , ω̂, θ̂) and

minf,ω,θE′ ≤ minf,ω,θE.

It remains to show that

minf,ω,θE′ ≥ minf,ω,θE

as this implies that f̂ , ω̂, θ̂ is a global minimizer for both E and E′.

Assume that f ′, ω′, θ′ is a global minimum of E′. Let k′
l be the

number of pixels assigned label l in labeling f ′. To complete the proof

we will show that E′(f ′, ω′, θ′) ≥ E(f ′, ω′′, θ′), where ω′′
l =

k′
l/ |P|.

Note that k′
l = 0 implies δl(f ′) = 0. Thus, the last term of E

is not greater than the corresponding term in energy E′. Without loss

of generality let us assume that k′
l > 0,∀l ∈ L. The only difference

between terms of E and E′ may appear if some label l with nonzero

support k′
l > 0 has the corresponding weight ω′

l that is less than ε. Let

Z be the set of such labels. Then the difference between E and E′ can

be written in the following form:

E′(f ′, ω′, θ′) − E(f ′, ω′′, θ′) = −
∑

l∈L

k′
l log ω′

l + h |L/Z|

+
∑

l∈L

k′
l log ω′′

l − h |L| ≥ −
∑

l∈Z

k′
l log ω′

l +
∑

l∈L

k′
l log

k′
l

|P|
− h |Z|

≥ − log ε
∑

l∈Z

k′
l +

∑

l∈L

k′
l log

k′
l

|P|
− h |Z|

≥ − log ε − |P| log |P| − h |L| .

This difference is not less than zero if ε ≤ γ|L|/ |P||P| . �

C - Implementation details for EM

Below we detail our implementation of EM algorithm for maximizing

likelihood (19) and posterior (20). The results of this implementation

were presented in Figures 10, 11, 12 from Section 4 in the context of

GMM estimation and multi-line fitting. Note that our EM implementa-

tion for posterior (20) is similar to the EM algorithm in [22].

E-step: As in standard EM we compute probabilities for points p to

be in each class l that are often called responsibilities

gpl =
ωl · exp (−Dp( l ))

∑

s ωs · exp (−Dp( s ))

where data fit is Dp( l ) = − log Pr(xp|θl). In case of GMM

one should use the standard Normal distribution. In case of line

fitting we use Dp( l ) as in formula (33) assuming that inliers for

each line have Gaussian orthogonal errors.

M-step: To re-estimate each Gaussian model’s parameters µl and Σl

in GMM, we use the standard weighted MLE formula, e.g see [6].

We use gpl as a weight for each point p. To re-estimate each line’s

parameters al, bl, and cl in multi-line fitting, we use a closed

form solution for weighted orthogonal regression. Re-estimation

of noise level σ is analogous to re-estimation of variance for 1-D

gaussian:

σl =

√
√
√
√

∑

p gpl

(
alxx

p + blx
y
p + cl

)2

∑

p gpl

.

Optimal mixture weights ωl can be obtained analytically by mini-

mizing (19) or (20) under constraint
∑

l∈L ωl = 1, ωl ≥ 0. In

case of likelihood (19) one gets the standard formula for EM

ωl =

∑

p gpl

|P|
.

In case of posterior (20) including additional Dirichlet prior (21)

for weights ωl, the optimal solution is

ωl =

∑

p gpl + α − 1

|P| + |L| · (α − 1)
. (61)

Interestingly, the EM algorithm for (19) and (20) differs only in

the corresponding formulas for re-estimating mixture weights ω.
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Note that Dirichlet prior is a proper (integrable) distribution only for

α > 0. But it does not generate sufficiently sparse MAP solutions

for (20) even with very small positive values of α, see Fig.12b. As

discussed in [22], one can use α < 0 giving much stronger sparsity,

see Fig.12a,c. Technically, the EM algorithm above still works since it

does not compute normalization constant or re-estimate parameter α.

Sometimes equation (61) produces negative weight ωl < 0. In this

case the extremum point is outside the valid domain for constrained op-

timization and, consequently, the maximum value is achieved at the

border of the domain where Dirichlet-based posterior (20) has infi-

nite value. Similarly to [22], we solve this problem in the following

way. We drop the mixture components with negative weights and re-

normalize other weights ωl to fit their sum to 1. Note that this heuristic

produces a “jumps” of the posterior function (since it goes to +∞
when any weight goes to zero) making it difficult to compare solutions

with different number of components.

Since Dirichlet-based posterior (20) automatically controls spar-

sity of the solution, we initialize this version of EM with a large num-

ber of randomly sampled models. This approach to minimizing (20)

is robust to initialization and avoids local minima [22]. This is also

similar to how PEARL [31] avoids local minima for (?′).
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