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Abstract Computer vision is full of problems elegantly ex-
pressed in terms of energy minimization. We characterize a
class of energies with hierarchical costs and propose a novel
hierarchical fusion algorithm. Hierarchical costs are natural
for modeling an array of difficult problems. For example,
in semantic segmentation one could rule out unlikely object
combinations via hierarchical context. In geometric model
estimation, one could penalize the number of unique model
families in a solution, not just the number of models—a kind
of hierarchical MDL criterion. Hierarchical fusion uses the
well-known α-expansion algorithm as a subroutine, and of-
fers a much better approximation bound in important cases.

Keywords Energy minimization · Hierarchical models ·
Graph cuts · Markov random fields (MRFs) · Segmentation.

1 Introduction

Energy minimization is of strong practical and theoretical
importance to computer vision. An energy expresses our cri-
teria for a good solution—low energies are good, high ener-
gies are bad—independent of any algorithm. Algorithms are
however hugely important in practice. Even for low-level vi-
sion problems we are confronted by energies that are com-
putationally hard (often NP-hard) to minimize. As a con-
sequence, a significant portion of computer vision research
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is dedicated to identifying energies that are useful and yet
reasonably tractable. Our work is of precisely this nature.

Computer vision is full of ‘labeling’ problems cast as en-
ergy minimization. For example, the data to be labeled could
be pixels, interest points, point correspondences, or mesh
data such as from a range scanner. Depending on the ap-
plication, the labels could be either semantic (object classes,
types of tissue) or describe geometry/appearance (depth, ori-
entation, shape, texture).

There are many labeling problems for which the labels
naturally form groups. In computer vision, a recent trend is
the use of ‘context’ to resolve ambiguities in object recog-
nition (e.g. Choi et al., 2010; Ladický et al., 2010a; Zhou
et al., 2011). The idea is that certain groups of labels are
self-consistent because they tend to appear together, e.g. the
{car,road,sky} labels all belong to the “outdoors” context,
while {table,chair,wall} all belong to the “indoors” context.
In computer graphics, one may wish to automatically clas-
sify the faces of a 3D mesh into semantic parts for the ben-
efit of artists and animators (Kalogerakis et al., 2010). The
part labels arm, tail, and wheel naturally belong to different
groups based on their context (humanoid, quadruped, vehi-
cle). In operations research, facility location can be cast as a
labeling problem, and hierarchical variants have been stud-
ied (Svitkina and Tardos, 2006; Sahin and Süral, 2007). All
of these disparate labeling problems are similar from an op-
timization point of view.

When labels are explicitly grouped in a hierarchy, the
costs in the energy are naturally structured. In this work, we
characterize a class of energies as having hierarchical costs.
If an energy satisfies our “h-metric” and “h-subset” condi-
tions, then we can often minimize it much more effectively.
We provide a novel hierarchical fusion (h-fusion) algorithm
to minimize our class of energies. Our algorithm general-
izes the well-known α-expansion algorithm (Boykov et al.,
2001) yet we provide better empirical performance and a
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Table 1 A selection of relevant energy-based problem formulations in computer vision. All are a special case of energy (1), with the exception of
Ladický et al. (2010a) which in principle allows for a wider class of energies that encourage ‘parsimony’.

paper V H algorithms applications

Zhu and Yuille (1996) semi-metric per-label region merging unsupervised segmentation
Torr (1998) × per-label expectation maximization + pruning model selection, motion estimation
Boykov et al. (2001) metric, semi-metric × α-expansion, αβ-swap stereo, denoising
Kolmogorov (2006) arbitrary × tree-reweighted message passing stereo
Li (2007) × per-label LP relaxation + rounding motion estimation
Lazic et al. (2009) × per-label belief propagation motion estimation
Kumar and Koller (2009) r-HST metric × hierarchical graph cuts denoising, scene registration
Delong et al. (2010) metric, semi-metric any subsets α-expansion, αβ-swap, greedy FL homography detection, motion esti-

mation, unsupervised segmentation
Barinova et al. (2010) × per-label greedy facility location (FL) object detection
Ladický et al. (2010a) metric, semi-metric parsimonious* α-expansion, αβ-swap object recognition
this work h-metric h-subsets h-fusion w/ α-expansion unsupervised segmentation

better approximation bound. The improved theoretical guar-
antees are important because, in practice, α-expansion can
easily get stuck in poor local minima for this useful class
of energies; to the best of our knowledge, our h-fusion al-
gorithm is state of the art. Like the original fusion algo-
rithm Lempitsky et al. (2010) ours is highly parallelizable.

With respect to our energy itself, the most relevant work
is the “label costs” of Delong et al. (2012). Our notion of
hierarchical costs is a special case of their energy, yet it is
important to explicitly characterize this subclass because, as
we show, it permits a much better minimization algorithm.
With respect to our algorithm, by far the most closely related
work is the r-HST metrics of Kumar and Koller (2009). We
review both these works in some detail.

2 Review of Related Work

First we review energies with “label costs” as described in
Delong et al. (2012). Let the set P index the data that needs
to be labeled, and let L be the set of possible labels. A label-
ing is any complete assignment f = (fp)p∈P where variable
fp ∈ L designates the label assigned at index p. For example
if P = {p, q} and L = {ℓ1, ℓ2} then a valid labeling might
be f = (ℓ2, ℓ1) where fp = ℓ2, fq = ℓ1.

We seek joint assignment f that minimizes an energy
balancing three types of criteria

E(f) = D(f) + V (f) + H(f). (1)

The D term encodes the individual preference of each vari-
able fp, whereas the V term encourages pairs of variables to
take similar values. These are typically expressed as

D(f) =
∑
p∈P

Dp(fp) (data costs)

V (f) =
∑
pq∈N

wpqV (fp, fq) (smoothness costs)

where the neighbourhood set N identifies pairs of variables
fp and fq that interact, and each weight wpq ≥ 0 scales the
strength of V for that particular pair. Energies with these
terms are quite standard in vision, particularly in models
based on Markov random fields (MRFs) and when perform-
ing maximum a posteriori (MAP-MRF) inference (Li, 1994).

The H term encourages the labeling f to use as few
unique labels as is necessary. For example, do not explain
the data with six labels if five would suffice just as well. The
general form that we use in this work can be expressed as

H(f) =
∑
L∈H

H(L)δL(f) (label costs)

where H is any collection of subsets of L, each H(L) is the
label cost of subset L ⊆ L, and the label cost indicator δL(·)
is defined as

δL(f) =

{
1 if ∃p : fp ∈ L
0 otherwise.

Intuitively, H(L) is the shared cost to be paid if f uses any
labels drawn from label group L. The cost is shared because
it is paid at most once, regardless of how many labels from
L appear in f . In many applications there is no reason to
group the labels, and so setting H = {{ℓ}}ℓ∈L restricts us
to individual per-label costs H({ℓ}) or, with slight abuse of
notation, setting H = L and writing each per-label cost as
H(ℓ). Label costs are an important special case of ‘high-
arity’ potentials recently studied in computer vision (e.g.
Werner, 2008; Woodford et al., 2009).

From an energy standpoint there are a number of works
that combine data costs D with V and/or H . Table 1 lists a
small selection of such works in computer vision. As can be
seen from the V column, many techniques are only applica-
ble if V (·, ·) satisfies certain assumptions.
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Definition 1 A smoothness cost V is semi-metric if it satis-
fies

V (α, α) = 0 ∀α ∈ L
V (β, α) = V (α, β) ≥ 0 ∀α, β ∈ L

and V is a metric if it additionally satisfies

V (α, β) ≤ V (α, γ) + V (γ, β) ∀α, β, γ ∈ L.

These assumptions were originally outlined by Boykov et al.
(2001) as sufficient conditions for their α-expansion and
αβ-swap algorithms. These conditions arise because of the
inherent limitations of graph cut methods (Boykov and Jolly,
2001; Kolmogorov and Zabih, 2004). Because our algorith-
mic approach is also based on graph cuts, we shall see a
similar kind of limitation arise in Section 4.1.

We note that, with the exception of Zhu and Yuille (1996),
all the works listed in Table 1 are of a discrete nature where
P is a finite set. A number of variational formulations of E
have recently been developed with continuous analogues of
D+V (e.g. Pock et al., 2008, 2009; Olsson et al., 2009) and
of D + V + H (Yuan and Boykov, 2010). Our main ideas
also apply to such continuous formulations, but we focus on
the discrete setting.

Energies of the form (1) are NP-hard to minimize in all
but a few special cases. Even D+V is NP-hard to minimize
for |L| ≥ 3 by reduction from 3-TERMINAL-CUT (Boykov
et al., 2001); in fact this case is max-SNP-hard (Cunning-
ham and Tang, 1999), meaning there is some ϵ > 0 for
which no polynomial-time (1+ ϵ)-approximation algorithm
can exist (i.e. no polynomial-time approximation scheme
(PTAS)). The D+H case is NP-hard by straight-forward re-
duction from SET-COVER using only per-label costs H(ℓ).
A hardness result for approximating SET-COVER by Feige
(1998) implies that D+H cannot be approximated within a
ratio of (1 − ϵ) ln |P| in polynomial time unless the com-
plexity class NP ⊆ DTIME[nO(log logn)], i.e. NP would
have to be only slightly super-polynomial, which is currently
deemed unlikely. This observation will help to put the ap-
proximation bound for our algorithm into perspective.

Observation 1 Feige’s hardness result is evidence that no
polynomial-time algorithm can minimize energy (1) within
a constant ratio of the optimum.

From an algorithmic standpoint, the most similar work
to ours is a recent paper by Kumar and Koller (2009). Their
aim is to efficiently minimize energies of the form D + V .
They consider the class of r-hierarchically well-separated
tree (r-HST) metrics (Bartal, 1998) which are a special case
of metrics defined above. We discuss r-HST metrics in Sec-
tion 8, but for now it is enough to understand that they are a
special case of metrics and that each has an associated con-
stant r > 1. Kumar and Koller provide an algorithm that, for
a particular r-HST metric, provides an 2r

r−1 -approximation

to the globally optimal labeling. Although this coefficient is
very large for r ≈ 1, the approximation only depends on V
(not on |P| or |L|). In some cases this ratio is better than the
well-known bound for the α-expansion algorithm (Boykov
et al., 2001) and the O(lg |L| lg lg |L|) bound for linear pro-
gramming relaxation (Kleinberg and Tardos, 2002).

Kumar and Koller describe their algorithmic process as
hierarchical graph cuts. This does not refer to computing a
graph cut in a hierarchical manner, but rather to minimizing
an energy D + V via a hierarchical sequence of standard
graph cuts. They show that the r-HST metric assumption on
V is sufficient to apply their algorithm. We aim to minimize
energies of the form D+V +H and, motivated by the diffi-
cult H term, have independently developed an algorithm we
call hierarchical fusion (h-fusion). However, at the highest
conceptual level our algorithm is the same as theirs—it is
only our class of energies and our sequence of subproblems
that is different, each of which we solve with the extended
α-expansion of Delong et al. (2012). The h-fusion process
will be explained in Section 5.

Also worth mentioning is a recent work by Felzenszwalb
et al. (2010) concerning energies of the form E = D + V .
By making the strong assumption that both D and V are
tree metrics, they can compute a global optimum. However,
most applications do not satisfy the metric assumption on
data costs D. Note that our work makes no such assumption.
We discuss tree metrics in Section 4.1.

Our contributions This work is about characterizing a class
of energies that will be useful in vision, along with a fast and
effective algorithm for dealing with large-scale problems.
Specifically, for energies of the form D + V +H ,
a) we define h-metric smoothness costs V , a wider class

than tree metrics yet still sufficient for our h-fusion al-
gorithm to apply,

b) we define h-subset label costs H , a sufficient condition
to apply h-fusion with high-order label costs,

c) we prove that the approximation bound of h-fusion is
much better than α-expansion in important cases, and

d) we provide worst-case examples to show that our theo-
retical bound is tight in some reasonable sense.

Contribution (a) is about a more general characterization of
V than that used by Kumar and Koller (2009) and by Felzen-
szwalb et al. (2010), while (b–d) are completely novel re-
sults on how to handle label costs in this framework.

The remainder of this paper is organized as follows. Sec-
tion 3 reviews the α-expansion algorithm in some detail.
Section 4 then introduces our notion of hierarchical costs, a
useful subclass of energy (1). Section 5 describes our h-fusion
algorithm, and Section 6 derives its approximation bound.
Section 7 gives some experiments to suggest how our ener-
gies and algorithm work. Finally, Section 8 discusses other
applications, relations to facility location, and extensions.
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Fig. 1 In an α-expansion move, each location p is given a binary
choice: keep its current label f̂p or switch to label α. Here we use
1 to indicate a variable that decided to take label α. Because variables
interact through V , the binary decisions are inter-dependent and so the
optimal move is calculated by a graph cut.

3 Review of α-Expansion

The algorithm we introduce in this paper uses the well-known
α-expansion algorithm (Boykov et al., 2001) as a key sub-
routine. The algorithm was designed for energies of the form
D + V , though we employ an extension to D + V +H by
Delong et al. (2012). Our approximation bound is therefore
intricately linked with α-expansion and its limitations, so we
review the algorithm here. Readers familiar with α-expansion
may skip ahead to Section 4.

3.1 How α-expansion works

The α-expansion algorithm performs local search using a
powerful class of ‘moves’. Given an initial labeling f̂ and
some particular label α ∈ L, an α-expansion move gives
each variable the following binary choice: either keep the
current label f̂p, or switch to label α. Let Mα(f̂) denote the
set of all moves (labelings) that can be generated this way,
in other words

Mα(f̂) =
{
f : fp ∈ {f̂p} ∪ {α}

}
. (2)

All variables are simultaneously allowed to keep their cur-
rent label or to switch, so there are an exponential number
of possible moves. For each choice of α we must efficiently
find the best possible move. In practice, this sub-problem is
solved by casting it as a graph cut (Greig et al., 1989) and
using combinatorial algorithms to compute the optimal bi-
nary configuration (e.g. Goldberg and Tarjan, 1988; Boykov
and Kolmogorov, 2004; Strandmark and Kahl, 2010). Fig-
ure 1 illustrates the steps behind a single expansion move.
Because a graph cut finds the best move from an exponential
number of possibilities, the α-expansion algorithm is a very
large-scale neighbourhood search (VLSN) technique (Ahuja
et al., 2002) and is very competitive in practice (Szeliski
et al., 2006).

With respect to some current labeling f̂ , the full set of
possible expansion moves is M(f̂) =

∪
α∈L Mα(f̂). The

α-expansion algorithm simply performs local search over
the full search neighbourhood M(f̂). Perhaps surprisingly,
local search with expansion moves will terminate with a la-
beling f̂ that is within a constant factor from the globally
optimal labeling f∗ (see Section 3.3). The α-expansion al-
gorithm is generally implemented as shown below.

α-EXPANSION(E) — local search with expansion moves

1 f̂ := arbitrary labeling
2 repeat
3 for each α ∈ L
4 f := argminf∈Mα(f̂) E(f) // solve via graph cut

5 if E(f) < E(f̂)

6 f̂ := f
7 until converged
8 return f̂

3.2 Graph cuts and the limits of α-expansion

From Table 1 we see that α-expansion is applicable if V is a
metric (Definition 1). We briefly review how this limitation
arises, as it will be relevant to our new h-fusion algorithm.

The main subproblem for α-expansion (line 4) is to find,
for a particular label α ∈ L, the best move f ∈ Mα(f̂).
The best move is the one with minimal E(f). Expansion
moves are fundamentally binary so we can encode a move
as a function f(x) of binary vector x = (xp)p∈P where

f(x)p =

{
f̂p if xp = 0

α if xp = 1

To solve the subproblem on line 4, we can construct a bi-
nary energy E′(x) = D′(x) + V ′(x) but with specially
constructed data terms D′

p and smoothness terms V ′
pq:

D′
p(0) := Dp(f̂p) V ′

pq(0, 0) := V (f̂p, f̂q)

D′
p(1) := Dp(α) V ′

pq(0, 1) := V (f̂p, α)

V ′
pq(1, 0) := V (α, f̂q)

V ′
pq(1, 1) := V (α, α)

(3)

where D and V are the terms of the original multi-label en-
ergy E(f). Since E′(x) = E(f(x)), minimizing E′ finds
an optimal expansion move w.r.t. E.

A binary energy of form E′ = D′+V ′ can be minimized
efficiently by a graph cut if E′(x) is a submodular function
(Boros and Hammer, 2002; Kolmogorov and Zabih, 2004).
Energy E′ is submodular if and only if it satisfies

V ′
pq(0, 0) + V ′

pq(1, 1) ≤ V ′
pq(0, 1) + V ′

pq(1, 0) (4)

for all pq ∈ N . Now, for which multi-label energies does
the expansion energy (3) result in submodular E′? The sub-
modularity condition (4) holds if and only if

V (f̂p, f̂q) + V (α, α) ≤ V (f̂p, α) + V (α, f̂q). (5)
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for all neighbours pq and all possible values of f̂p and f̂q .
Since we must assume f̂p and f̂q could take any label in
L we arrive at the following due to Kolmogorov and Zabih
(2004); Boykov and Veksler (2006).

Observation 2 The α-expansion algorithm is applicable to
energies of the form D+ V if and only if for all α, β, γ ∈ L

V (α, α) + V (β, γ) ≤ V (α, γ) + V (β, α). (6)

The metric assumption is sufficient for (6) to hold, and so
α-expansion is applicable if V is metric energy.

Rother et al. (2005) showed that, by assuming a non-
arbitrary initial labeling, α-expansion can be applied to a
wider class of energies: for each β, γ ∈ L, either V must
satisfy (6) for all α ∈ L, or V (β, γ) = ∞. Unfortunately,
α-expansion offers no approximation guarantees for this ex-
tended class (Theorem 1 below). In this paper we define a
class of smoothness costs V called h-metrics, and it too can
be extended to non-metric infinities this way. However, we
aim to quantify approximation bounds for our algorithm so,
for simplicity, we will not include such infinities in our def-
inition of h-metrics.

Delong et al. (2012) showed that α-expansion is also ap-
plicable to energies with label costs as long as H(L) ≥ 0

for each label subset L ⊂ L. The expansion step requires a
binary energy of the form E′(x) = D′(x)+V ′(x)+H ′(x)
where H ′ defines very high-order potentials over x, unlike
V ′ which defines only ‘quadratic’ (pairwise) potentials. We
will use their construction in our main subroutine.

3.3 Approximation bounds of α-expansion

Local search with expansion moves is guaranteed to termi-
nate at a local minimum f̂ that is within a constant factor of
the global optimum f∗ (Veksler, 1999; Boykov et al., 2001).
The actual bound is E(f̂) ≤ 2cE(f∗) where c ≥ 1 is some
constant that depends on V . If c is small, then we can expect
α-expansion to do at least a reasonable job. If c is large, the
the bound is meaningless and we have even more reason to
try other algorithms (e.g. Kolmogorov, 2006).

Understanding the approximation bound of α-expansion
will be helpful for understanding our generalized bound in
Section 6. The following holds for any energy E = D + V

with1 Dp(·) ≥ 0 and metric V (·, ·).

Theorem 1 (Veksler (1999)) If f∗ is a global minimum of
E = D + V , and f̂ is a local minimum w.r.t. expansion
moves, then

E(f̂) ≤ 2cE(f∗) where c =
maxα ̸=β∈L V (α, β)

minγ ̸=ζ∈L V (γ, ζ)
(7)

1 Note that α-expansion itself does not require Dp(·) ≥ 0; this
assumption is only needed for analysis of worst-case bounds.

In other words, α-expansion is a 2c-approximation algo-
rithm where c ≥ 1 depends on the ratio of largest to smallest
costs in V . Below are some V (·, ·) terms commonly used in
vision, shown in matrix form for |L| = 5.

Potts (1952) linear truncated linear
0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0

0 1 2 2 2

1 0 1 2 2

2 1 0 1 2

2 2 1 0 1

2 2 2 1 0

c = 1 c = 4 c = 2

Underneath we see the coefficient c corresponding to each
case. The simplest potential (Potts) penalizes fp ̸= fq equally,
and gives the best approximation bound. When the range
of values is large, e.g. for the ‘linear’ penalty of |fp − fq|,
the bound (7) gets worse. Our h-fusion algorithm beats the
α-expansion bound for a wide class of ‘hierarchical’ costs.

Delong et al. (2012) showed that incorporating label costs
H(·) into α-expansion can worsen the above bound. If arbi-
trary label costs H(L) ≥ 0 are assumed on arbitrary subsets
L ⊂ L then the bound is as follows.

Theorem 2 (Delong et al. (2012)) If f∗ is a global mini-
mum of E = D + V + H , and f̂ is a local minimum w.r.t.
α-expansion, then the following bound is tight:

E(f̂) ≤ (2c+ c2)E(f∗) +
∑
L⊂L

H(L) (8)

where c2 = maxL:H(L)>0 (|L|− 1).

This tells us that, if arbitrary label costs are assumed, stan-
dard α-expansion is no longer a constant-ratio approxima-
tion algorithm (recall Observation 1) and furthermore the
bound gets worse (c2 gets larger) if costs are defined on large
subsets L.

4 Energies with Hierarchical Costs

We wish to minimize an energy of the general form (1), but
we assume the labels are grouped in some kind of hierar-
chy. Depending on the application, the grouping will likely
be either semantic (hierarchy of object labels) or geomet-
ric (families of geometric models). One option for mini-
mizing such energies is to ignore the grouping and simply
apply α-expansion. However, Theorem 2 suggests caution,
because α-expansion finds poor local minima when, for ex-
ample, strong high-order label costs are involved.

We express the label grouping structure as follows. The
leaves of the tree are the actual labels L. The root of the tree
we denote by r. For trees of non-trivial structure, we call the
extra nodes pseudo-labels and denote them by the set S, so
the set of all intermediate nodes is S ∪ {r}. The structure of
the tree itself can be defined by a child-to-parent map π(·)
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Fig. 2 A hierarchical grouping of label set L = {ℓ1, . . . , ℓ6} into
groups S = {A,B} where, for example, the parent π(ℓ4) = B. At
right is a possible labeling f and the pseudolabeling (π ◦f) it induces.

where for each node i ∈ L ∪ S a parent π(i) ∈ S ∪ {r} is
defined. We use T = L ∪ S ∪ {r} to denote all tree nodes.
Figure 2 shows a simple label hierarchy.

Merely declaring the labels to be ‘grouped’ does not in
itself change energy E(f) (we still have fp ∈ L) nor is the
standard α-expansion algorithm ‘aware’ of a label hierar-
chy. However, in Sections 4.1–4.2 we describe energies for
which a ‘good’ tree can be defined so that our h-fusion al-
gorithm (Section 5) is provably better than α-expansion. In
fact if one defines a flat tree (S = {}) then our algorithm and
approximation bounds all reduce to those of Boykov et al.
(2001) and Delong et al. (2012) as a special case.

Sections 4.1 and 4.2 develop key definitions: the class of
h-metrics for smoothness costs V , and the class of h-subsets
for label costs H . These definitions are directly motivated
by our h-fusion algorithm and how its computation is or-
ganized. If an energy satisfies our h-metric and h-subset as-
sumptions, then it can be minimized by h-fusion (Section 5).

4.1 Hierarchical Smoothness Costs (h-Potts, h-metrics)

The following notation will be helpful for discussing a tree
defined by parent function π. We use πn(i) to denote n ap-
plications of π, as in π(· · ·π(i)). The set of children of a
node j is denoted by

I(j) = { i ∈ T : π(i) = j } .

The set of all nodes in the subtree rooted at j is denoted by

subtree(j) = { i ∈ T : πn(i) = j for some n ≥ 0 } .

The set of labels belonging to the subtree of node i is

Li = { ℓ ∈ L : ℓ ∈ subtree(i) }

A hierarchical grouping of labels L induces a grouping
of the smoothness cost values inside each V (·, ·) potential.
Looking at the tree structure in Figure 2 we can say that la-
bels ℓ1 and ℓ2 are both in group A whereas ℓ1 and ℓ4 are
from different groups; thus V (ℓ1, ℓ2) can be interpreted as
a “within-group cost” and V (ℓ1, ℓ4) as a “between-group
cost.” An example is illustrated below, where regions of the
|L| × |L| matrix are delineated.
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Individual costs inside each block can vary, though it is help-
ful to consider the simple case when the cost within each
block is constant. So, we now define hierarchical Potts, a
natural class of hierarchical smoothness costs V parameter-
ized by node-based ‘transition’ costs {wi}i∈S∪{r}. In what
follows, lca(α, β) denotes the lowest common ancestor of
nodes α and β with respect to the tree structure π.

Definition 2 (Delong et al. (2011)) Given tree structure π,
for each node i ∈ T let wi ≥ 0 be its transition cost so
that V (α, β) = wlca(α,β) for all α, β ∈ L and wi = 0 for
each leaf i ∈ L. We then say that (V, π) forms a hierarchical
Potts (h-Potts) potential.

For example, Delong et al. (2011) use a two-level tree where
wr is the transition cost between ‘super-labels’ and each wi

for i ∈ S is the transition cost between ‘sub-labels’ in group
i. They show that if wi ≤ 2wr then V is metric and standard
α-expansion can be applied. For our h-fusion algorithm to
apply, a simple sufficient condition is that wi ≤ wπ(i) for all
i ∈ L ∪ S.

Now we define h-metrics, a class of hierarchical smooth-
ness costs where V is not necessarily parameterized by wi.
As we shall see in Section 5, the h-metric assumption is nec-
essary for our specialized algorithm.

Definition 3 We say that pair (V, π) forms a hierarchical
metric (h-metric) if π is irreducible2 and for every i ∈ L∪S

V (α1, α2) + V (β, γ) ≤ V (α1, γ) + V (β, α2) (9)

∀α1, α2 ∈ Li, β, γ ∈ Lπ(i) \ Li

Note that for a flat tree (S = {}) each set Li = {i} so
we always have α1 = α2. It is easy to show, then, that the
h-metric constraint (9) on a flat tree reduces to the standard
α-expansion constraint (6). Figure 3 gives a concrete exam-
ple of an h-metric and shows how (9) constrains the costs
that V can encode.

For a fixed tree structure, the relationship between h-Potts,
h-metrics, tree metrics and r-HST metrics is shown by the set
inclusion diagram below (see Appendix A for proof). Our
h-fusion algorithm will be applicable to the shaded cases.

2 A tree is irreducible if all its internal nodes have at least two chil-
dren, i.e. there are no ‘redundant’ parent nodes and so for each i there
exists some γ, ζ such that lca(γ, ζ) = i.
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(a) example h-metric two configurations where (a) satisfies (9) (b) an h-Potts with wi < wπ(i)

Fig. 3 The costs in (a) define an h-metric for the tree structure in Figure 2. Inequality (9) is satisfied for every tuple (α1, α2, β, γ) required; the
two tuples emphasized at center are (ℓ2, ℓ2, ℓ4, ℓ6) where (9) becomes 0 + 4 ≤ 3 + 3, and (ℓ3, ℓ1, ℓ6, ℓ4) where it becomes 2 + 4 ≤ 3 + 3. On
the right, (b) shows a totally different h-metric that is also h-Potts with wi < wπ(i).

4.2 Hierarchical Label Costs (h-subsets)

We have already defined a notion of ‘hierarchical’ smooth-
ness costs (h-metrics), and we now do the same for label
costs. As we shall see, if an energy E(f) has hierarchical
costs with respect to some tree, then E(f) can be minimized
by our h-fusion algorithm on that tree (Section 5).

Definition 4 Given an irreducible tree structure π, we de-
fine its hierarchical label subsets (h-subsets) as

H =
{
L ⊆ L : L∩Li = ∅ ∨ L ⊂ Li ∨ L ⊇ Li ∀ i ∈ T

}
or, equivalently

H =
{
L ⊆ L : L = ∪i∈ILi for some siblings I ⊂ I(j)

}
For example, assume we have L = {ℓ1, . . . , ℓ6} grouped in
the structure shown below:

The hierarchical label subsets are

H =
{
{},{ℓ1}, {ℓ2}, {ℓ3}, {ℓ4}, {ℓ5}, {ℓ6},

{ℓ1, ℓ2}, {ℓ3, ℓ4}, {ℓ5, ℓ6},
{ℓ1, ℓ2, ℓ3, ℓ4}, {ℓ1, ℓ2, ℓ5, ℓ6}, {ℓ3, ℓ4, ℓ5, ℓ6}
{ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6}

}
.

Note that sets like {ℓ2, ℓ3} and {ℓ1, ℓ2, ℓ3} are not in H be-
cause they cannot be generated from a union of siblings in
the particular hierarchy chosen.

Definition 5 Given a tree π we say that (H,π) form hierar-
chical label costs if H(L) > 0 ⇒ L ∈ H, i.e. if label costs
appear only on the h-subsets.

Note that for a flat tree, the set H = 2L and so all subsets
are considered ‘hierarchical’ in this degenerate case.

5 Hierarchical Fusion Algorithm (h-fusion)

Recall that the α-expansion algorithm (Section 3, Boykov
et al., 2001) minimizes a multi-label energy by construct-
ing a sequence of binary energies. Our h-fusion algorithm
constructs a hierarchical sequence of multi-label energies,
each of which is solved by running α-expansion as a subrou-
tine. These intermediate multi-label energies are designed to
‘stitch’ or to ‘fuse’ labelings that were computed earlier in
the sequence. As we shall see, this procedure provides better
optimality guarantees than α-expansion for a wide class of
energies, particularly those with strong label costs.

We name our algorithm h-fusion after the binary fusion
moves of Lempitsky et al. (2010). They propose an iterative
algorithm to minimize energies of the form E = D + V .
Given a two candidate labelings f̂A and f̂B , they try to find
a lower-energy labeling by ‘fusing’ the best parts of each.
This is highly analogous to optimized crossover operations
(Aggarwal et al., 1997), a successful technique in genetic
algorithms (discussed in Section 8). Figure 4 illustrates how
new labelings are generated this way in our hierarchy. The
key insight of Lempitsky et al. is that all fusion moves can
be generated by a binary vector x = (xp)p∈P where the
move itself is f = xf̂A + x̄f̂B . Note the similarity with
the inner loop of α-expansion: an expansion move from cur-
rent labeling f̂ can now be thought of as the binary fusion
f = xα+ x̄f̂ with constant labeling α = (α, . . . , α). They
propose a tennis-tournament strategy for selecting pairs of
labelings to fuse, and they stop after the energy fails to de-
crease for some number of attempts. However, they cannot
always find an optimal fusion because they fuse arbitrary la-
belings; the resulting binary energy is non-submodular and
therefore NP-hard in general (see Section 3.2). They must
rely on minimization methods like QPBO (Kolmogorov and
Rother, 2007; Rother et al., 2007) with no approximation
guarantees.

In contrast, we construct multi-label subproblems and
approximately minimize each one with α-expansion. Ours is
therefore a graph cut approach that does not rely on QPBO,
message passing (Kolmogorov, 2006), or other LP relax-
ations (Werner, 2008). Furthermore we,
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Fig. 4 Given labelings f̂A and f̂B , the set of all possible fusions
M(f̂A, f̂B) includes the two ‘stitched’ labelings shown at bottom.
Our move space M(f̂1, . . . , f̂k) fuses any number of labelings.

– handle energies with label costs (E = D + V +H),
– characterize the subclass of energies (h-metrics, h-subsets)

for which h-fusion is applicable, and
– prove approximation bounds that generalize and improve

upon those of α-expansion.

To the best of our knowledge, we are the first to incorporate
high-arity costs (label costs) into a fusion-based algorithm.

At each step of our h-fusion algorithm, the main sub-
problem is to find argminf∈M(f̂1,...,f̂k) E(f) where each f̂ i

is a fixed labeling with f̂ i
p ∈ Li and the set of all possible

fusions is

M(f̂1, . . . , f̂k) =
{
f : fp ∈ {f̂ i

p}i∈{1..k}
}

(10)

Crucially, in our framework no two labelings f̂ i and f̂ i′

can contain the same labels, unlike the ‘tennis-tournament’
scheme. Given a tree structure π on label set L, our algo-
rithm generates labelings in a bottom-up fashion with re-
spect to π. Figure 5 shows the order of sub-problems on a
simple tree structure. For each internal node j a multi-label
fusion energy is constructed and approximately minimized
by α-expansion. The local minima computed at one level of
the tree are subsequently fused at the next-higher level. Re-
cursive code is given below, where calling h-FUSION(r) on
root node r builds the final labeling in bottom-up manner.

h-FUSION(j) — for node j, outputs labeling f̂j with f̂j
p ∈ Lj

1 if j ∈ L
2 return (j, j, . . .) // at leaf; return constant labeling
3 for i ∈ I(j) // compute child labelings
4 f̂i := h-FUSION(i)
5 E′ := CONSTRUCTFUSIONENERGY(j)
6 g := α-EXPANSION(E′) // each gp is a child index ∈ I(j)
7 fp := f̂

gp
p ∀ p ∈ P // convert child index to label in L

8 return f // local minimum at node j

The key question for h-FUSION is how to set up E′

(line 5) so that it encodes our original energy E over all
possible fusions, i.e. over all labelings in M({f̂ i}i∈I(j)).

subproblems 1,2,3 subproblem 4 subproblem 5

Fig. 5 The h-fusion steps on a tree. Subproblems 1,2,3 independently
generate labelings using mutually exclusive labels. Subsequent steps
fuse these labelings a bottom-up manner.

Given a set of labelings {f̂ i}i∈I(j) there is a one-to-one cor-
respondence between mappings g : P → I(j) and labelings
f ∈ M({f̂ i}i∈I(j)). We let f(g) be the labeling fp = f̂

gp
p

corresponding to g. We can then design an unconstrained
energy E′ such that E′(g) = E(f(g)) for all g.

Again, we define E′ to be an energy over child indices.
It will involve the familiar terms

E′(g) = D′(g) + V ′(g) +H ′(g) (11)

where D′ takes the usual form and V ′ takes the form

V ′(g) =
∑
pq∈N

V ′
pq(gp, gq).

As we shall see, the label costs H ′ of our fusion energy must
take the form of local label costs (Delong et al., 2012)

H ′(g) =
∑

I⊆I(j)

H ′
PI
(I)δI(gPI ) (local label costs)

where cost H ′
PI
(I) is only applied for particular subset of

variables PI ⊆ P associated with child indices I ⊆ I(j). In
other words, we need E′ to encode costs of the form “pay if
g uses this child here.” The precise costs encoded by D′, V ′

and H ′ are shown in CONSTRUCTFUSIONENERGY below.

CONSTRUCTFUSIONENERGY(j)

1 D′
p(i) := Dp(f̂i

p) ∀ p ∈ P, i ∈ I(j)
2 V ′

pq(i, i
′) := wpq ·V (f̂i

p, f̂
i′

q ) ∀ pq ∈ N , i, i′ ∈ I(j)
3 for each L ∈ H such that H(L) > 0
4 I := { i ∈ I(j) : L ∩ Li ̸= ∅ } // relevant child indices
5 PI := { p ∈ P : ∃f̂i

p ∈ L, i ∈ I } // relevant pixel indices
6 H′

PI
(I) := H(L) // set up local label cost

7 return E′ = (D′, V ′, H′)

The correctness of D′ and V ′ are self evident; the al-
gorithm of Kumar and Koller (2009) includes lines 1–2 but
on a more restrictive class of metrics. However, our work
was mainly motivated by label costs. It is not obvious how
lines 4–6 encode original label cost H(L) as a local label
cost H ′

PI
(I). We now verify its correctness, first by simple

example and then by proving it in general.

Example 1 Suppose E′ must fuse the two child labelings f̂1

and f̂2 shown below.
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ℓ
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labeling f̂1 labeling f̂2
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DA

some subsets of P

Assume H = {{ℓ1}, {ℓ2}, {ℓ3}, {ℓ4}, {ℓ1, ℓ2}, {ℓ3, ℓ4}} and
H(L) > 0 for each L ∈ H. Each gp ∈ {1, 2} and so E′(g)
can account for H(L) by setting

H ′
P(1) := H({ℓ1, ℓ2}) H ′

B∪C(1) := H(ℓ1)

H ′
P(2) := H({ℓ3, ℓ4}) H ′

A∪D(1) := H(ℓ2)

H ′
A∪B(2) := H(ℓ3)

H ′
C∪D(2) := H(ℓ4).

Costs H ′
P(i) (left-hand column) are global label costs in the

fusion energy. The other costs H ′
P (i) (right-hand column),

are localized label costs that encode the original (global)
per-label costs H(ℓ). In this example, the fusion below at
left should pay all label costs except H(ℓ3), whereas the fu-
sion at right should pay all costs except H(ℓ2).

1

1

2

pay all except H(ℓ3) pay all except H(ℓ2)

2

Theorem 3 If energy E has hierarchical label costs (H,π)

then E′(g) = E(f(g)) for all g :P →I(j).

Proof The correctness of D′ and V ′ are self-evident so we
focus on proving that H ′

PI
(I) correctly encodes H(L) for

some subset of labels L ∈ H. This reduces to showing that
δL(f(g)) = δI(gP ) where indices I and pixels P = PI are
as defined on lines 4 and 5 of CONSTRUCTFUSIONENERGY.
In other words, we must prove that

∃f̂gp
p ∈ L, p ∈ P ⇐⇒ ∃gp ∈ I, p ∈ P (12)

where we can assume f̂
gp
p ∈ Lgp due to the way h-fusion

works.
Because we assume hierarchical label costs, each L ∈ H

belongs to one of four cases derived from Definition 4.

1. If L ∩ Li = ∅ for all i ∈ I(j), then we know that any
f̂
gp
p /∈ L, then the cost H(L) is not applied in subtree j.

By definition I = ∅ ensuring δL(f(g)) = δ∅(gP ) = 0,
which is correct.

2. If L ⊂ Li for some i ∈ I(j), then by definition I = {i}
and P = {p : f̂ i

p ∈ L}. Since gp ̸= i ⇒ f̂
gp
p /∈ L and so

f(g) contains a label in L if and only if gp = i for some
p ∈ P . Therefore δL(f(g)) = δi(gP ) holds in this case.

3. If Li ⊆ L ⊂ Lj for some i ∈ I(j), then clearly P = P .
Since L ∈ H we must also have L = ∪i∈ILi, and so
f(g) uses a label in L if an only if g uses a label in I .
Therefore δL(f(g)) = δI(g) holds in this case.

4. If L ⊇ Lj then I = I(j) and P = P , so H(L) can be
added to E′ as a constant or simply ignored. �

Looking at the proof of Theorem 3 we can see that the struc-
ture of h-subsets is especially needed for the third case to
hold. If we allow a subset L /∈ H, then α-expansion could
not be applied to the resulting E′ because the internal binary
steps would be non-submodular and potentially NP-hard.
The purpose of Example 2 is to demonstrate why H(L) > 0
for arbitrary L can be problematic.

Example 2 Suppose E′ must fuse the two child labelings f̂1

and f̂2 shown below.

B
C

A

labeling f̂1

ℓ
2

ℓ
4ℓ

3

labeling f̂2 some subsets of P

ℓ
1

Further suppose that H({ℓ1, ℓ4}) > 0 in the original en-
ergy. This cost should be paid in E′(g) if and only if any
gp variable in region A is assigned child index 1 or any gp
in region B is assigned child index 2. However, this poten-
tial cannot be encoded as a label cost any sort. Furthermore,
encoding H({ℓ1, ℓ4}) would result in a non-submodular fu-
sion energy. Let E′(i, j) denote the label cost of assigning
index i to pixels A and index j to pixels B, then

E′(1, 1) + E′(2, 2) = 2H({ℓ1, ℓ4})
> H({ℓ1, ℓ4}) = E′(1, 2) + E′(2, 1).

That E′(i, j) is not submodular follows from inequality (4)
if one assumes |A| = |B| = 1, and so α-expansion is not
applicable inside h-fusion. In fact, because this example has
only two labels, we can conclude that the αβ-swap algo-
rithm (Boykov et al., 2001) is also inapplicable to E′.

Finally, we establish that h-metrics give a precise char-
acterization of smoothness costs V that h-fusion can handle.

Theorem 4 The h-fusion algorithm is applicable to V using
tree π if and only if (V, π) forms an h-metric.

Proof Recall from (6) that α-expansion is applicable if and
only if V satisfies, for all α, β, γ ∈ L,

V (α, α) + V (β, γ) ≤ V (α, γ) + V (β, α). (13)

Actually, if (13) holds for β, γ ∈ L\{α} the it trivially holds
for all β, γ ∈ L. This observation matters for h-fusion.

In the h-fusion case, each local fusion metric V ′
pq on line

2 of CONSTRUCTFUSIONENERGY must satisfy this con-
straint and so α-expansion can fuse a collection of labelings
{f̂ i}i∈I(j) if and only if, for all i ∈ I(j), i′, i′′∈ I(j)\{i},

V (f̂ i
p, f̂

i
q) + V (f̂ i′

p , f̂
i′′

q ) ≤ V (f̂ i
p, f̂

i′′

q ) + V (f̂ i′

p , f̂
i
q) (14)
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Fig. 6 The top row shows three example smoothness cost matrices. The first is a standard (flat) Potts potential with penalty V1(ℓ, ℓ′) = 3 for any
ℓ ̸= ℓ′ and so c = 1 for a flat tree πa. Metrics V2 and V3 have varying penalties and so a flat tree yields c = 3 and c = 8 respectively. However,
by applying h-fusion on tree structures πb and πc respectively (bottom row), we can achieve better c for these particular metrics. The table at right
shows other values of c and demonstrates that the choice of tree is important for achieving a good bound.

Note that f̂ i
p and f̂ i

q could each be any label in Li and are
not necessarily identical, unlike the α-expansion case. The
constraints on the original metric V for h-fusion will there-
fore be more restrictive than for α-expansion. Since inequal-
ity (14) must hold for all possible labelings f̂ i, f̂ i′ , and f̂ i′′

then it is equivalent to

V (α1, α2) + V (β, γ) ≤ V (α1, γ) + V (β, α2) (15)

α1, α2 ∈ Li, β, γ ∈ Lj \ Li

Since j = π(i) then inequalities (15) are identical to (9). �

6 Approximation Bounds of h-Fusion

Since α-expansion has an approximation bound and we use
it as our main subroutine, it is natural to ask if h-fusion has
some bound of its own. If we use a flat tree π and assume
E = D+V , then h-fusion reduces to classical α-expansion
and we directly inherit the 2c-approximation where

c =
maxα,β∈L V (α, β)

minγ ̸=ζ∈L V (γ, ζ)
. (16)

Our goal is to derive a generalized bound for h-fusion
with arbitrary tree π and arbitary label costs (i.e. H = 2L in
(1)). Like the α-expansion bound in Theorem 2, the quality
of our new bound will involve some c and c2 that depend on
the particular energy. As we shall see, these two coefficients
can be much smaller for our algorithm. We begin by defining
some useful quantities for expressing the h-fusion bound.

Definition 6 Given smoothness costs V and a particular tree
π, we define two quantities for each node i:

V max
i = max

α,β∈Li

V (α, β) V min
i = min

γ,ζ∈Li

lca(γ,ζ)=i

V (γ, ζ).

In other words, V max
i is the maximum cost for any pair of

labels in the subtree of node i, and V min
i is the minimum

cost for two labels from different subtrees descended from i.
For example, in Figure 3a we have V max

A = 2, V min
A = 1

and V max
B = 4, V min

B = 2. For the root node r, this example
has V max

r = 4 and V min
r = 3.

Definition 7 Given an h-metric (V, π) where V is also semi-
metric, we define the additional quantities

bj = V max
j + max

i∈I(j)
bi c = max

j∈T \L

(
bj

V min
j

)

Observation 3 If π defines a flat tree, then c in Definition 7
reduces to quantity (16) from the α-expansion bound.

The ratio c is most important because it bounds the worst-
case approximation error. As we will show, when c is large
for standard α-expansion, choosing a non-flat tree can result
in a much smaller constant for h-fusion and thereby a better
bound. The easiest way to understand how V and π affect c
is by looking at a few numeric examples. Figure 6 examines
specific values of c for various pairs of smoothness cost ma-
trices V and trees π. These examples suggests that for each
choice of V there exists an optimal choice of π to give the
best approximation bound. Since for every metric V we can
use a flat tree, we can always find a tree for which h-fusion’s
bound is at least as good as α-expansion’s.

We now consider label costs in h-fusion and generalize
the related coefficient c2. The cardinality of set I ⊂ I(j)
on line 4 of CONSTRUCTFUSIONENERGY is an important
quantity affecting c2 for h-fusion. In general, the smaller
|I| the better the bound. (Note that we use ⊂ to mean (
throughout this paper.)

Definition 8 We define c2 to be the maximum cardinality of
any index set I (CONSTRUCTFUSIONENERGY, line 4) that



Minimizing Energies with Hierarchical Costs 11

is a strict subset of I(j), minus 1. That is, the constant

c2 = max
H(L)>0

|I(L)| − 1

where I(L) ⊂ I(j) for some j and
∪

i∈I(L) Li = L.

The fact that I(L) will always be the union of some siblings
in the tree follows from the assumption that L is an h-subset.

Observation 4 If π defines a flat tree, then c2 in Definition 8
reduces to the same quantity for α-expansion in Theorem 2.

To see how h-fusion can beat α-expansion at minimizing
energies with label costs, consider the following worst-case
example for α-expansion.

Example 3 Suppose variables P = {p1, . . . , pn} and labels
L = {ℓ1, . . . , ℓn+1}. The data costs Dp(·) are shown in the
table below, where a > 0, and smoothness costs are zero.
We also assume a label cost H({ℓ1, . . . ℓn}) = a, as illus-
trated.

ℓ
1

ℓn

ℓn+1

0 ∞∞

∞ ∞

∞∞ 0

a a

data costs p
1

pn

ℓ
1

ℓn
ℓn+1

a

label cost

The labeling f̂ = (ℓn+1, . . . , ℓn+1) is a local minimum for
α-expansion because no individual variable wants to pay the
(shared) label cost in order to switch its label. However the
globally optimal labeling is f∗ = (ℓ1, . . . , ℓn) and, since
E(f̂) = nE(f∗), the α-expansion solution can be made
arbitrarily bad. The h-fusion algorithm will find f∗ if we
use the tree shown above, at right. Notice that c2 = 0 for
this tree, whereas c2 = n− 1 for a flat tree (α-expansion).

For an example of non-trivial c2, consider again the six-
label tree structure:

1 2 3

If the only label cost H(L) > 0 is on subset L = {ℓ5, ℓ6}
then I(L) = {3} and so c2 = |I(L)| − 1 = 0. If instead we
have a label cost on L = {ℓ1, ℓ2, ℓ5, ℓ6} then I(L) = {1, 3}
yielding coefficient c2 = 1. Again, the bound of h-fusion is
stronger for energies where c2 is small.

Using our definitions of c and c2 we state the main the-
orem of this work: an improvement upon the bound of De-
long et al. (2012). For the purposes of the bound we assume
Dp(·) ≥ 0 and that V is semi-metric.

Theorem 5 If f∗ is a global minimum of E =D+ V +H
with h-metric (V, π) and hierarchical label costs (H,π),
then the solution f̂ computed by h-fusion is bounded by

E(f̂) ≤ (2c+ c2)E(f∗) +
∑
L∈H

H(L) (17)

where c and c2 are constants given in Definitions 7 and 8
respectively (possibly much smaller than in Theorem 2).

Proof See Appendix B. �

In the presence of arbitrary label costs, this is still not a
constant-ratio approximation bound, but we can construct
a worst-case example to show that our bound is indeed tight
(see Delong, 2011).

7 Application: Hierarchical Color Segmentation

We use hierarchical color segmentation as a simple, illus-
trative example because it allows us to visualize the effects
of hierarchical smooth and label costs. Given an image we
wish to group pixels with similar color. We treat segmenta-
tion as labeling where each label represents a color; the la-
bels essentially re-colorize the image. However, we explic-
itly divide the possible colors into groups, and seek a pixel
labeling that relies only on a few groups of colors. For ex-
ample, a natural way to group colors is by hue, and the goal
is then to re-color the image using as few hues as possible
while staying reasonably faithful to the original image.

The tree below illustrates one possible grouping (hier-
archy) of color labels. Each leaf corresponds to a specific
color label (e.g. dark red, red, bright red,...) while each sub-
tree corresponds to a group of labels (e.g. reds, blues, greens,
grays,...)

reds blues greens grays

In order to limit the number of hues used in re-colorization
we introduce group costs in addition to regular label costs. A
cost is associated with each group of colors L and is repre-
sented by a label subset cost H(L) > 0. It is paid whenever
any of the colors in the group is used in the labeling. For
the smoothness costs V we use hierarchical Potts smooth-
ness terms between and within color groups to encourage
smooth re-colorization. If Ip is an image pixel, the data cost
Dp(ℓ) is proportional to squared distance between Ip and
the color represented by label ℓ.

We thereby formulate the re-colorization problem as hi-
erarchical energy. We compare α-expansion and h-fusion
when applied to this energy. In all the re-colorization ex-
periments our color hierarchy consists of 121 groups of col-
ors, each containing 20 different shades varying from dark to
bright. This results in 2420 labels in total. We then demon-
strate qualitative (the resulting re-colorizations) and quanti-
tative (running time and energy value) comparisons. In all
experiments we set wi = 1 and wr = 2. Each invocation
of α-expansion performed two cycles only (a cycle expands
on each label exactly once). This limitation was applied to
all instances of α-expansion within h-fusion as well. (Al-
lowing α-expansion to converge takes much longer but only
decreases the energy by < 0.01% for both algorithms.)
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input image

h-fusion α-expansion

Fig. 7 Synthetic example. Qualitative and quantitative comparison
between α-expansion and h-fusion. The blue line corresponds to en-
ergy attained by α-expansion as a function of time. The pink line with
diamonds correspond to energies of child-labelings optimized sequen-
tially in the first step of h-fusion. Child-labelings are then stitched to-
gether in a fusion step. The energy of the final fusion is shown by the
red line. The green line represents the energy of h-fusion if all child-
labelings are computed in parallel. See text for details.

Fig. 8 Input images used for the experiments shown in Fig. 9.

Consider the input image shown in Fig. 7 top. It has
a smooth gradient of color varying from black to yellow
through the shades of green and red. Both α-expansion and
h-fusion algorithms result in re-colorizations with 4 groups
of colors each, namely shades of green, yellow, orange and
red (see bottom left and right). However, it can be seen from
the result of α-expansion (bottom right) that the optimiza-
tion got stuck in a local minimum. By expanding on a wrong
group of colors first (wrong hue), α-expansion was unable
to match the bright portion of the image well. At this point
expanding on any one label of a better matched hue did not
justify adding the extra group costs associated with this new
hue. In the case of h-fusion the algorithm is able to replace
one group of hues with another at once and therefore attain
a lower energy (see Fig. 7 bottom-left).

The plot in Fig. 7 provides quantitative comparison be-
tween α-expansion and h-fusion in terms of running time
and energy values. The blue line corresponds to energy value
attained by α-expansion as a function of time. The h-fusion

h-fusion α-expansion

h-fusion α-expansion

h-fusion α-expansion

Fig. 9 Qualitative and quantitative comparison between α-expansion
and h-fusion on input images shown in Fig. 8. Again, blue, red-pink
and green lines correspond to α-expansion, sequential h-fusion and
parallel h-fusion respectively. See text for details. Note that the re-
colorizations obtained with h-fusion are more faithful to the original
images than those obtained with α-expansion. For example the lego
piece in the image of a girl is much brighter and, in the parrot image,
the parrot’s chest and the tree branch are colored more faithfully.
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algorithm begins with optimizing a set of sub-energies cor-
responding to child-labelings. Each child labeling is restricted
to one sub-tree of labels and essentially re-colors the im-
age with the colors from that group only. (For example one
child-labeling re-colors the image with the shades of red,
another with the shades of green...) The sub-energies are
independent and can be optimized either sequentially or in
parallel. When sub-energies are optimized sequentially we
represent each sub-energy with a pink diamond and plot
them as a function of cumulative time. After all sub-energies
are optimized, h-fusion algorithm fuses the resulting child-
labelings by running α-expansion (starting from the child-
labeling with the minimal energy. Again we limit the h-fusion
to two cycles only). The energy of h-fusion is represented by
the red line and attains a lower energy than regular α-expansion.

Unlike α-expansion, the running time of h-fusion can be
dramatically improved by minimizing sub-energies in paral-
lel. This is illustrated by the green line in the plot of Fig. 7.
In our specific application the parallel version of h-fusion is
faster by a factor of 10–15 compared to sequential h-fusion.
At any time in our experiments, the energy curve of paral-
lel h-fusion is dramatically below that of α-expansion, and
terminates 20–30 times faster. In theory this speed-up fac-
tor should grow linearly with the number of siblings at each
level of the label hierarchy. The speed-up is due to the fact
that running one expansion cycle with h-fusion is more ef-
ficient than with regular α-expansion. This is because the
number of unique possible labels in h-fusion corresponds
to the number of groups in the hierarchy (121 in our case)
while the number of unique labels for α-expansion corre-
sponds to the number of leaves in the hierarchy (2420 colors
in our case).

Figure 9 shows similar results for additional input im-
ages shown in Fig. 8. For all the experiments sequential
h-fusion (pink-red line) attained lower energy and in shorter
time than α-expansion (blue line), with even more signifi-
cant speedup in the case of parallel optimization of the sub-
energies in h-fusion (green line).

8 Discussion

The main results of this paper are a characterization of hier-
archical costs (h-metrics and h-subsets), the h-fusion algo-
rithm itself, and a significant improvement on the approxi-
mation bound of α-expansion. These results are theoretical,
but we foresee a number of applications for such energies.

Applications of hierarchical costs We presented hierarchi-
cal color segmentation as the simplest possible example that
illustrates (a) the nature of energies with hierarchical costs,
and (b) the qualitative and quantitative benefits of h-fusion
for such energies. However, computer vision is full of prob-
lems for which hierarchical costs are natural.

pay-per-line pay-per-familypoint cloud + outliers

outlier label

Fig. 10 Depiction of how hierarchical line fitting might work with an
energy of the form E = D +H . Each label corresponds to a possible
line (e.g. from random sampling), and each point wants to be labeled
by a nearby line. Label cost H(ℓ) discourages line ℓ from being used
unless there are enough supporting points—otherwise the points take
the outlier label (constant penalty per point). However, if we group
lines by orientation, we could add costs H(L) where L is a family of
lines, encouraging solutions that use a few families of parallel lines.

The most obvious is using hierarchical context (e.g. Choi
et al., 2010) for image segmentation, where in theory we
could group the labels into some appropriate context as de-
picted below.

keyboard

coffee
desk

car

street

building

“office” context “street” context

This is a very rudimentary form of context but can be inte-
grated with segmentation via an energy with hierarchical V
and H terms.

In vision it is also common to assign labels that have ge-
ometric meaning, such as depths (e.g. Boykov et al., 2001;
Ladický et al., 2010b), homographies or motions (e.g. Birch-
field and Tomasi, 1999; Isack and Boykov, 2011). For exam-
ple, Isack and Boykov (2011) start with a set of observations
(points, matches, etc.) and use random sampling to gener-
ate hundreds of candidate geometric models, much the way
RANSAC does (Fischler and Bolles, 1981). They formulate
the model fitting problem as a labeling problem where each
label represents a candidate model. They find a labeling that
corresponds to a good configurations of models, and do this
by minimizing an energy of the form E = D + V + H .
However, there are many situations where geometric mod-
els fall into a natural hierarchy. Figure 10 is a hypothetical
example to illustrate this point. Analogous hierarchical rela-
tionships exist between, for example, a fundamental matrix
(a rigid motion) and the family of homographies (families of
correspondences) compatible with that fundamental matrix
(Hartley and Zisserman, 2003).

Furthermore, hierarchical costs can be useful for detect-
ing patterns, for compression, and for learning a database of
inter-dependent patches from images (Gorelick et al., 2011).
Outside vision, Sefer and Kingsford (2011) showed that the
r-HST metrics of Kumar and Koller are effective at identify-
ing protein function; our work could extend their results.
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Relation to r-HST metrics Recall that, at a high level, the
h-fusion process shown in Figure 5 is the same as that used
by Kumar and Koller (2009). Given a metric V , they find
the set of r-HST metrics that best approximates V and try
to minimize an energy of the form E = D + V using a
bottom-up fusion process. The main idea of an r-HST metric
is as follows. Assume we are given a tree with distances
d(i, j) defined on each edge from child i to parent j. Assume
that the distance from j to all its children is uniform, i.e.
d(i, j) = d(i′, j) for all i, i′ ∈ I(j). Further assume that we
know the parent-to-child distance gets cheaper by a factor of
r as we descend the tree, i.e. d(i,j)

d(k,i) ≥ r for some constant
r > 1. The total distance between two leaf nodes α and β is
the cumulative sum of edge distances along the path from α
to β in the tree. If the ‘costs’ of a pairwise potential V (α, β)
correspond to such a distance function for all α, β, then V is
said to be an r-HST metric.

Our concept of an h-metric is expressed directly in terms
of constraints on V (·, ·), not on edges or distances traversed
in the tree. Furthermore, r-HST metrics are a strict subset of
h-metrics (see Appendix A).

Generalizing facility location In the optimization and oper-
ations research communities, uncapacitated facility location
(UFL) is a well-studied problem (e.g. Shmoys et al., 1998).
UFL assigns a ‘facility’ to serve each client such that the
cost to clients and the cost of opening facilities is jointly
minimized. UFL is connected to our energy because if we
let L denote the facilities and P denote the clients then every
problem instance can be expressed as minimizing an energy
of the form

E(f) =
∑
p∈P

Dp(fp) +
∑
ℓ∈L

H(ℓ)δℓ(f). (18)

In vision, the UFL objective has recently been applied to
motion segmentation by Li (2007) and by Lazic et al. (2009),
but goes all the way back to Torr and Murray (1994).

There exist variants of UFL that allow for a hierarchy
of facilities, e.g. Svitkina and Tardos (2006) and Sahin and
Süral (2007). This generalization allows for more realistic
modeling of complex interdependencies between facilities
themselves. Some of these works derive constant-factor ap-
proximation bounds for hierarchical facility location, e.g.
Kantor and Peleg (2009), but all such works assume metric
client costs where the costs Dp(·) are computed as distances
from a particular center. Without this assumption, Feige’s
hardness result still holds. Strategies for optimizing hierar-
chical UFL include linear programming relaxation, primal-
dual algorithms and, very recently, message passing algo-
rithms (Givoni et al., 2011).

We can encode a kind of hierarchical facility cost with
our framework as follows. Suppose facilities ℓ1 and ℓ2 re-
quire the services of facility ℓ3, which costs 50 to open.

A label cost H({ℓ1, ℓ2, ℓ3}) := 50 correctly accounts for
the shared dependency of ℓ1 and ℓ2 on ℓ3. If we further-
more have a facility ℓ4 that depends on both ℓ3 and some
facility ℓ5 (cost 80), then our label costs should instead be
H({ℓ1, ℓ2, ℓ3, ℓ4}) := 50 and H({ℓ4, ℓ5}) := 80.

Furthermore, our h-fusion algorithm can handle smooth-
ness costs V , which to the best of our knowledge are novel
for UFL. In the UFL setting, V (fp, fq) can encode an ex-
plicit preference that clients p and q be serviced by the same
facility. When clients are social, there are many scenarios
where such a preference makes sense. When client costs D
are metric (e.g. Euclidean distance) then this preference is
implicitly encoded in D. However, when the client costs are
not metric, such as clients connected by an irregular network
despite being physically close, then our smoothness costs V
may be useful for modeling such problems.

Improving the bound Recall from Observation 1 that for the
SET-COVER problem the best we can hope for is a ln |P|-
approximation. Yet one can formulate SET-COVER using an
energy of the form (18), so minimizing energy E = D +
V +H is at least as hard. However, Hochbaum (1982) gave
a simple greedy algorithm for SET-COVER and proved that
it yields precisely a ln |P|-approximation, the best possible
according to Feige (1998). If label costs are arbitrary in (18),
then α-expansion’s bound is also arbitrarily bad. So, there is
a huge gap between what α-expansion can achieve on (18)
versus what Hochbaum’s greedy algorithm can guarantee.
For energies of the form E = D + H , it may be possible
to extend Hochbaum’s algorithm and use it as a subroutine
within h-fusion (rather than using α-expansion). One may
ask if h-fusion could inherit a better approximation bound
in that case. We also do not know if her approach can be
applied in the presence of smoothness costs V .

Relation to genetic algorithms Within our framework, the
inner α-expansion subroutine is performing a sequence of
fusion moves like proposed by Lempitsky et al. (2010). We
point out that a binary fusion move is essentially an opti-
mized crossover operation, already used to some success in
genetic algorithms (Aggarwal et al., 1997; Meyers and Or-
lin, 2007). A standard concern for genetic algorithms is how
to maintain population diversity so that, when two chromo-
somes (labelings) are crossed, there is a chance that the de-
scendant will be better. Our h-fusion process forces a kind
of population diversity based on a tree: the labelings in our
multi-label fusion each contain labels from different sub-
trees. It is interesting that this structured-diversity gives a
provably better approximation bound in our case.
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Güvenç Sahin and Haldun Süral. A review of hierarchical facility lo-
cation models. Computers and Operations Research, 34(8):2310–
2331, 2007.

Emre Sefer and Carl Kingsford. Metric Labeling and Semi-metric Em-
bedding for Protein Annotation Prediction. In Research in Compu-
tational Molecular Biology, 2011.
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A (Proof of Metric Relationships)

Pair (V, π) forms a tree metric if V represents an edge-weighted dis-
tance in tree π. This means that V (α, β) = d(α, β) where d(α, β)

is the sum of edge weights dij ≥ 0 along a path from leaf α to leaf
β. A tree metric (V, π) is therefore entirely parameterized by its edge
weights dij where j = π(i). An r-HST metric is just a tree metric
where edge costs get cheaper by a factor of 1

r
< 1 as we descend the

tree, i.e. dij ≤ 1
r
djk for j = π(i), k = π(j). So, r-HST metrics are

a subclass of tree metrics by definition.
[tree metrics ⊂ h-metrics]: For a tree metric to be an h-metric, d

must satisfy (according to Definition 3, page 6)

d(α1, α2) + d(β, γ) ≤ d(α1, γ) + d(β, α2) (19)

∀α1, α2 ∈ Li, β, γ ∈ Lπ(i) \ Li

For each i ∈ L ∪ S use shorthand j = π(i) and consider that

d(α1, α2) ≤ d(α1, i) + d(i, α2), (20)

d(β, γ) ≤ d(β, j) + d(j, β), (21)

d(α1, γ) = d(α1, j) + d(j, γ), (22)

d(β, α2) = d(β, j) + d(j, α2). (23)

Use inequalities (20) and (21) to replace the left-hand side of (19)
and cancel terms with (22) and (23) to get d(α1, i) + d(i, α2) ≤
d(α1, j) + d(j, α2), which is clearly satisfied since dij ≥ 0. To see
that some (non-h-Potts) h-metrics are not tree metrics, consider the
tree and symmetric smoothness cost V (·, ·) below.
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[(h-Potts ∩ h-metrics) * tree metrics]: The example below is a
simple h-Potts potential which is also an h-metric but is not a tree
metric.

0 2 4 4 4 4

0 4 4 4 4

0 2 4 4

ℓ
1
ℓ
2
ℓ
3
ℓ
4
ℓ
5
ℓ
6

ℓ
1

ℓ
2

ℓ
3

0 2 4 4

0 4 4

0 6

0

ℓ
3

ℓ
4

ℓ
5

ℓ
6

ℓ
1
ℓ
2
ℓ
3

ℓ
4
ℓ
5
ℓ
6

The fact that it is not a tree metric can be verified by setting up a linear
program relating edge costs dij to node costs wi, and noting that the
system is infeasible if dij ≥ 0.

[(h-Potts with wi ≤ wπ(i)) ⊂ (h-Potts ∩ tree metrics)]: If node
costs {wi}i∈S∪{r} are non-negative and do not increase as we de-
scend the tree (i.e. wi ≤ wπ(i)) then we can construct a tree metric
by induction. Given some node j ∈ S ∪ {r}, assume we have non-
negative edge costs so that, for each child i ∈ I(j), d(α, i) = 1

2
wi

for all α ∈ Li. Then we can assign cost dij = 1
2
(wj − wi) to each

child edge of j to get d(α, j) = 1
2
wj for all α ∈ Lj . Since wi ≤ wj

we also have a tree metric for subtree j. It is not necessary to assume
wi ≤ wπ(i) for an h-Potts potential to be a tree metric, as the example
below demonstrates (edge costs are shown on the tree).
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[(h-Potts ∩ r-HST metrics) ⊂ (h-Potts with wi ≤ wπ(i))]: As
described by Kumar and Koller (2009), an r-HST metric has a constant
edge cost dij between node j and all of its children i ∈ I(j). In
other words, an r-HST metric is actually parameterized by one common
‘edge’ cost per parent node {dj}j∈S∪{r}, where 0 ≤ di ≤ 1

r
dπ(i)

for all i ∈ S. It is easy to see that, for an h-Potts potential to be an
r-HST metric, it must have wi = wj − 2dj where j = π(i). Thus
dj ≥ 0 implies wi ≤ wj . Also note that r > 1 means quantity
wj − wi must decrease at a rate of 1

r
as we descend the tree. �
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B (Proof of Theorem 5)

Proof Without loss of generality we assume that all weights wpq = 1.
Consider any local minimum f̂j computed by h-fusion at internal node
j, and let us choose some child node i ∈ I(j). We first define a useful
set of pixels for i with respect to a global optimum f∗

Pi = { p : f∗
p ∈ Li }.

This set contains all pixels assigned a label within subtree i, and so for
any other child i′ ̸= i we know that Pi ∩ Pi′ = ∅.

We can produce a labeling f̂j⊗i within one h-fusion move from
local minimum f̂j as follows:

f̂j⊗i
p =

{
f̂i
p if p ∈ Pi

f̂j
p otherwise.

Since each f̂j is known to be a local optimum w.r.t. expansion moves
for each i ∈ I(j) we know that

E(f̂j) ≤ E(f̂j⊗i). (24)

The general strategy to use (24) for different i to build an inequality
that is ultimately of the form E(f̂j) ≤ E(f∗)+error. This will be
achieved by breaking the energy terms in E into parts in such a way
that a recursive inequality can be established. The recursive inequality
will then be expanded until all terms can be bounded relative to E(f∗).

Let E(·)|A denote a restriction of the summands of energy (1) to
only the following terms:

E(f)|A =
∑
p∈A

Dp(fp) +
∑

pq∈A
V (fp, fq).

We separate the unary and pairwise terms of E(f) via interior, exterior,
and boundary sets with respect to pixels Pi:

Ai = Pi ∪ { pq ∈ N : p, q ∈ Pi }
Ai = P \ Pi ∪ { pq ∈ N : p, q ̸∈ Pi }

∂Ai = { pq ∈ N : p ∈ Pi, q ̸∈ Pi }.

Let EH(f) denote the total label cost incurred by a labeling f , i.e. the
sum of label cost terms. The following facts now hold:

E(f̂j⊗i)|Ai
= E(f̂i)|Ai

(25)

E(f̂j⊗i)|Ai
= E(f̂j)|Ai

. (26)

We have not accounted for the label costs yet, but for simplicity we
break this proof into two parts: part 1 derives the coefficient c related
to smoothness costs V , and part 2 derives the coefficient c2 related to
label costs H . For part 1 we can assume there are no label costs at all.

Part 1. Derive coefficient c for smoothness cost bound
Using (25) and (26) we can cancel out all the Ai terms and rewrite
(24) as

E(f̂j)|Ai∪∂Ai
≤ E(f̂i)|Ai

+ E(f̂j⊗i)|∂Ai
(27)

For each i ∈ I(j) inequality (27) contains a subset of all the
energy terms in E(f̂j)|Aj

pertaining to pixels Pi. Let I∗ = {i ∈
I(j) : Pi ̸= ∅} be the set of children whose sub-trees contain a label
used by f∗. If we sum inequality (27) over all i ∈ I∗, the left-hand
side will contain all the terms in E(f̂j)|Aj

(and more). Adding up all
the left-hand sides we have∑
i∈I∗

E(f̂j)|Ai∪∂Ai

= E(f̂j)|Aj∪∂Aj
+
∑
i∈I∗

E(f̂j)|∂Ai\∂Aj

≥ E(f̂j)|Aj
.

(28)

Using (28) and likewise adding up the right-hand sides of (27) we have

E(f̂j)|Aj
≤
∑
i∈I∗

E(f̂i)|Ai
+ E(f̂j⊗i)|∂Ai

(29)

=
∑
i∈I∗

E(f̂i)|Ai
+ E(f̂j⊗i)|∂Ai∩∂Aj

+ E(f̂j⊗i)|∂Ai\∂Aj
(30)

=
∑
i∈I∗

E(f̂i)|Ai
+

∑
pq∈∂Ai∩∂Aj

V (f̂i
p, f̂

j
q ) +

∑
pq∈∂Ai\∂Aj

V (f̂i
p, f̂

j
q ) (31)

The first important observation about (31) is that each E(f̂i)|Aj

term on the right-hand side can be substituted by recursively applying
the inequality itself. We can recursively substitute, branching further
and further down the tree, until the path finally stops at a leaf ℓ ∈ L giv-
ing us base case E(f̂ℓ)|Aℓ

=
∑

p∈Pℓ
Dp(f∗

p ). The sets {Pℓ}ℓ∈L
must be disjoint and their union is Pj so expression (31), when fully
expanded, becomes roughly

=
∑

p∈Aj

Dp(f
∗
p ) + pairwise terms of the form V (f̂i

p, f̂
π(i)
q ). (32)

The second observation about (31) is that each edge pq on an outer
boundary ∂Ai ∩ ∂Aj appears once in the sum over I∗ whereas each
edge on an interior boundary ∂Ai \ ∂Aj appears twice: once for p ∈
Ai and once for some q ∈ Ai′ . By careful accounting we collect
all the V (f̂i

p, f̂
π(i)
q ) terms generated by the recursive substitution and

express (31) as3

=
∑

p∈Aj

Dp(f
∗
p )

+
∑

pq∈Aj

 ∑
i∈J (f∗

p
;f∗

q
)

V (f̂i
p, f̂

π(i)
q ) +

∑
i∈J (f∗

q
;f∗

p
)

V (f̂π(i)
p , f̂i

q)


(33)

where we define J (ℓ; ℓ′) to be the set of nodes along the path from a
label ℓ ∈ L up to, but not including, the lowest common ancestor of ℓ
and ℓ′, namely

J (ℓ; ℓ′) =
{
ℓ, π(ℓ), . . . , πn−1(ℓ)

}
where πn(ℓ) = lca(ℓ, ℓ′).

All that remains is to bound each V (f̂i
p, f̂

π(i)
q ) in terms of V (f∗

p , f
∗
q )

using bi described in Definition 7. From now on we use ai = V max
i

and di = V min
i as shorthand. For a particular edge pq shown in (33)

we must have each V (f̂i
p, f̂

π(i)
q ) ≤ aπ(i) and so their sum is

∑
i∈J (f∗

p
;f∗

q
)

V (f̂i
p, f̂

π(i)
q ) ≤ aπ(f∗

p
)+. . .+alca(f∗

p
,f∗

q
) ≤ blca(f∗

p
,f∗

q
).

(34)

We also know that V (f∗
p , f

∗
q ) ≥ dlca(f∗

p
,f∗

q
) so we can use ratio

blca(f∗
p ,f∗

q )

dlca(f∗
p ,f∗

q )
to bound the approximation error at each edge pq appearing

in (33), giving upper-bound

≤
∑

p∈Aj

Dp(f
∗
p ) +

∑
pq∈Aj

(
2

blca(f∗
p ,f∗

q )

dlca(f∗
p ,f∗

q )
V (f∗

p , f
∗
q )

)
.

(35)

3 Due to our assumption that V is semi-metric and so V (ℓ, ℓ) = 0,
we can simply sum over all pq ∈ Aj instead of only where f∗

p ̸= f∗
q .
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If j is the root of the tree, then {p ∈ Aj} = P and {pq ∈ Aj} = N .
Using the fact that any ratio bi

di
is bounded from above by quantity c

(Definition 7) we arrive at

≤
∑
p∈P

Dp(f
∗
p ) + 2c

∑
pq∈N

V (f∗
p , f

∗
q ) (36)

= E(f∗) + (2c− 1)
∑

pq∈N
V (f∗

p , f
∗
q ) (37)

≤ 2cE(f∗). (38)

This completes the proof of Part 1. When there are only smoothness
costs, E(f̂) ≤ 2cE(f∗) where f̂ is the labeling generated at the root
of the tree.

Part 2. Derive coefficient c2 for label cost bound
We now revisit from (27) onward but with the assumption that there
are hierarchical label costs.

Let EH(f) denote the total label cost incurred by a labeling f , i.e.
the sum of label cost terms. We can bound the label cost EH(f̂j⊗i)
of our fused labeling by

EH(f̂j⊗i) ≤ EH(f̂j) +
∑

L⊆L\L̂j

L∩L̂i ̸=∅

H(L) (39)

where L̂j and L̂i are the sets of unique labels appearing in f̂j and f̂i

respectively.
Recall from Part 1 that, looking at the key inequality (24), we can

break the energy terms on each side into parts based on sets Ai,Ai,
and ∂Ai. Because E(f̂j⊗i)|Ai

= E(f̂j)|Ai
these terms cancel out,

and we can substitute E(f̂j⊗i)|Ai
= E(f̂i)|Ai

. Along with bound
(39) and canceling the EH(f̂j) terms we can now rewrite (24) as

E(f̂j)|Ai∪∂Ai
≤ E(f̂i)|Ai

+E(f̂j⊗i)|∂Ai
+

∑
L⊆L\L̂j

L∩L̂i ̸=∅

H(L) (40)

Again, let I∗ = {i ∈ I(j) : Pi ̸= ∅} be the set of child nodes
that contain a label used by f∗ in their subtree. We sum inequality (40)
over all i ∈ I∗ to arrive at a recursive expression, this time incorpo-
rating errors incurred by label costs. The key observation is that a par-
ticular label cost H(L) appears once on the right-hand side for each
element in the set I∗

L = {i ∈ I∗ : L ∩ L̂i ̸= ∅}. The sum of
inequalities (40) thus implies

E(f̂j)|Aj
≤

(∑
i∈I∗

E(f̂i)|Ai
+ E(f̂j⊗i)|∂Ai

)
+

∑
L⊆L\L̂j

H(L) · |I∗
L|

(41)

where the quantity in parentheses is identical to that of Part 1.
The above inequality can be recursively expanded for each E(f̂i)|Ai

until the recursion stops at a label used by f∗. We already know that,
after recursive substitution, the quantity in parentheses is bounded by
(35). We now must bound the total label cost accumulated by recursive
application of (41). The central question is whether a particular subset
L that appears in (41) with |I∗

L| > 0 for node j can appear again when
we recursively substitute the children i ∈ I∗. If the answer were ‘yes’
then each label cost H(L) could appear more than |I∗

L| total times by
the end of recursive expansion, leading to a worse bound. Fortunately,
Lemma 1 (after this proof) says that this is not the case; each L appear-
ing in the sum for j and child i (40) can never reappear in the sums for
i or its children.

From now on we assume j is the root of the tree structure, and so
f̂j = f̂ , i.e. the final labeling output by h-fusion. If we let H∗ denote

the set of all subsets L generated by recursive substitution of (41), we
can thereby write

E(f̂) ≤ (36) +
∑

L∈H∗

H(L) · |I∗
L| (42)

Note that the left-hand side of (42) is still E(f̂j)|Aj
which does

not include the label costs incurred by f̂j . By adding EH(f̂j) to both
sides we have E(f̂j)|Aj

+EH(f̂j) = E(f̂) on the left side, giving a
new inequality below.

E(f̂) ≤ (36) + EH(f̂) +
∑

L∈H∗

H(L) · |I∗
L| (43)

= (37) + EH(f̂)− EH(f∗) +
∑

L∈H∗

H(L) · |I∗
L| (44)

All that is left is to re-group the summands in the last three terms (the
label cost terms) in a way that proves our theorem. First we rewrite the
three sums more explicitly, using L̂ and L∗ to denote the unique labels
used by f̂ = f̂j and f∗ respectively.∑

L∈H
L∩L̸̂=∅

H(L) −
∑
L∈H

L∩L∗̸=∅

H(L) +
∑

L∈H∗

H(L) · |I∗
L|

=
∑
L∈H

L∩L∗
=∅

L∩L̸̂=∅

H(L) −
∑
L∈H

L∩L∗̸=∅
L∩L̂=∅

H(L) +
∑

L∈H∗

H(L) · |I∗
L| (45)

First note that if |I∗
L| > 1 then this means L ⊃ Li for some

Li ∩ L∗ ̸= ∅ and so L ∩ L∗ ̸= ∅ also. We can break the last sum
in (45) into two parts based on whether L ∩ L∗ ̸= ∅.

=
∑
L∈H

L∩L∗
=∅

L∩L̸̂=∅

H(L) +
∑

L∈H∗

L∩L∗
=∅

H(L)−
∑
L∈H

L∩L∗̸=∅
L∩L̂=∅

H(L) +
∑

L∈H∗

L∩L∗̸=∅

H(L) · |I∗
L|

(46)

We can also show that L ∈ H∗ ⇒ L ∩ L̂ = ∅ as follows. If
L ∈ H∗ then there must be some node i such that L ∩ L̂i = ∅ and
L ⊂ Li. We know from (59) in Lemma 1 that L̂ ∩ Li ⊆ L̂i, so this
implies ∅ = L∩ L̂i ⊇ L∩ (L̂ ∩Li) = L∩ L̂. This means the two
leftmost sums of (46) have disjoint L and can be bounded by simply∑

L∈HH(L). It furthermore implies that, for every L appearing in
the rightmost sum of (46), the same L must appear in the negative
sum. Putting these together we have upper bound on label costs

≤
∑
L∈H

H(L) +
∑

L∈H∗

L∩L∗̸=∅

H(L) · (|I∗
L| − 1) (47)

≤
∑
L∈H

H(L) + c2 ·
∑

L∈H∗

L∩L∗̸=∅

H(L) (48)

≤
∑
L∈H

H(L) + c2EH(f∗) (49)

We can therefore revise bound (44) to

E(f̂) ≤ (37) + c2EH(f∗) +
∑
L∈H

H(L) (50)

≤ E(f∗) + (2c− 1)E(f∗) + c2E(f∗) +
∑
L∈H

H(L)

(51)

≤ (2c+ c2)E(f∗) +
∑
L∈H

H(L) (52)

Inequality (52) is main result of our Theorem. �
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Lemma 1 If label subset L appears in the summand of (40) for node
j and child i, then L does not appear in the summands of (40) for any
k ∈ subtree(i).

Proof To be clear, let us restate the claim more formally. Let Hj⊗i

denote all subsets L appearing in the label cost summands of (40) when
applied to node j and child i, i.e.

Hj⊗i def
= {L : L ∩ L̂j = ∅, L ∩ L̂i ̸= ∅ } (53)

We must prove that L ∈ Hj⊗i ⇒ L /∈ Hk⊗l for any k ∈
subtree(i) and l ∈ I(k).

First note that for each L ∈ Hj⊗i we have

L ∩ L̂j = ∅ ⇒ L + Lj (54)

L ∩ L̂i ̸= ∅ ⇒ L ∩ Li ̸= ∅ (55)

By the hierarchical label cost assumption (Definition 4) we can use (54)
and (55) to conclude that L ∈ Hj⊗i ⇒ L ⊂ Lj .

Now consider the set Hj⊗i ∩ Hk⊗l. By the definition (53) an
element L of this joint set must satisfy at least the following conditions:

L ∩ L̂i ̸= ∅ (56)

L ∩ L̂k = ∅ (57)

L ⊂ Lk. (58)

However, no subset L can satisfy all three conditions, as we now show.
In the h-fusion algorithm, if f̂i contains a label ℓ ∈ Lk, then f̂k must
contain ℓ as well—after all, there is no other way that a label in Lk

could have propagated up to f̂i. This relation can be restated as

L̂i ∩ Lk ⊆ L̂k ∀ k ∈ subtree(i) (59)

Starting from (56) we can say

L ∩ L̂i ̸= ∅

⇒ L ∩ (L̂i ∩ Lk) ̸= ∅ by (58)

⇒ L ∩ (L̂k) ̸= ∅ by (59)

which contradicts requirement (57). Thus Hj⊗i ∩ Hk⊗l = ∅ for all
k ∈ subtree(i) and so L cannot reappear. �


