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Abstract

We describe a new approach to feature-based
object recognition, using maximum a posterior:
(MAP) estimation under a Markov random field
(MRF) model. The main advantage of this ap-
proach is that it allows explicit modeling of de-
pendencies between individual features of an ob-
ject model. For instance, it can capture the fact
that unmatched features due to partial occlusion
are generally spatially coherent rather than in-
dependent. Efficient computation of the MAP
estimate in our framework can be accomplished
by finding a minimum cut on an appropriately
defined graph. An even more efficient approx-
tmation, that does mot use graph cuts, is pos-
stble. We call this technique spatially coherent
matching. Our framework can also be seen as
providing a probabilistic understanding of Haus-
dorff matching. We present ROC curves from
Monte Carlo experiments that tllustrate the im-
provement of the new spatially coherent match-
ing technique over Hausdorff matching.

1 Introduction

In this paper we present a new Bayesian ap-
proach to object recognition using Markov ran-
dom fields (MRF’s). As with many approaches
to recognition we assume that an object is mod-
eled as a set of features. The recognition task
is then to determine whether there is a match
between some subset of these object features
and features extracted from an observed im-
age. The central idea underlying our approach

is to explicitly capture dependencies between in-
dividual features of the object model. Markov
random fields provide a good theoretical frame-
work for representing dependencies between fea-
tures. Moreover, recent algorithmic develop-
ments make it quite practical to compute the
maximum a posteriori (MAP) estimate for the
MRF model that we employ (e.g., [Boykov et
al., 1998], [Greig et al., 1989]).

Our approach contrasts with most feature-based
object recognition techniques, as they do not ex-
plicitly account for dependencies between fea-
tures of the object. It is desirable to be able
to account for such dependencies, because they
occur in real imaging situations. For example,
a common case occurs with partial occlusion of
objects, where features that are near one an-
other in the image are likely to be occluded to-
gether. In our model, we assume that the pro-
cess of matching individual object features is
described a priori by a Gibbs distribution asso-
ciated with a certain Markov random field. This
model captures pairwise dependencies between
features of the object. We then use mazimum a
posteriort (MAP) estimation to find the match
between the object and the scene or to show
that there is no such match. While a number
of probabilistic approaches to recognition have
been reported in the literature (e.g., [Pope and
Lowe, 1996], [Olson, 1998],[Subrahmonia et al.,
1996]) these methods do not provide an explicit
model of dependencies between features.

We show that finding the best match using the
Hausdorff fraction [Huttenlocher et al., 1993],



[Rucklidge, 1996] is a special case of our tech-
nique, where the dependencies between all pairs
of features in the object model are equally
strong. Therefore, our Bayesian framework can
be seen as providing a probabilistic understand-
ing of Hausdorff matching. With this view of
Hausdorff matching, it becomes apparent that
one of the main limitations of the Hausdorff ap-
proach is its failure to take into account the
continuity of matches between neighboring fea-
tures. That is, the Hausdorff approach does not
account for the fact that in a local neighborhood
there tends to be a higher correlation between
features. We suggest a modification to Haus-
dorff approach which we call spatially coherent
matching. This method requires matching fea-
tures to be coherent in a given neighborhood
system of the model. We present some Monte
Carlo experiments demonstrating that this spa-
tially coherent matching measure is a substan-
tial improvement over Hausdorff matching in
the case that images are cluttered with many
irrelevant features and have substantial occlu-
sion of the object to be recognized.

2 The MAP-MRF Recognition
Framework

In this section we describe our object match-
ing framework in more detail. We represent
an object by a set of features, indexed by in-
tegers in the set M = {1,2,...,m}. Each fea-
ture corresponds to some vector M; in a fea-
ture space of the model. Commonly the vectors
M; will simply specify a feature location (z,y)
in a fixed coordinate system of the model, al-
though more complex feature spaces fit within
the framework.

A given image I is a set of observed features
from some underlying true scene. Each fea-
ture ¢ € I corresponds to a vector I; in a fea-
ture space of the image. The true scene can be
thought of as some unknown set of features 17
in the same feature space. Similarly, I} is a
vector describing the feature s € I7 in the fea-
ture space of the image. We are interested in
finding a match between the model M and the
true scene IT, using the observed features I.

A match of the model M to the true scene
IT is described by a pair {S,L} where S =
{S1,52,...,Sm} is a collection of boolean vari-
ables and L is a location parameter. If S; = 1
then the ¢th feature of the model has a matching
feature in IT and if S; = 0 then it does not. In
this case we say it is mismatched. For example,
the event {Sl = ... = Sk = 1, Sk+1 = ... =
Sm = 0, L = [} implies that for 1 < ¢ < &,
feature ¢ of M has a matching feature j € I7,
such that IJT = M; ® L. Moreover, the last
(m — k) features are mismatched, meaning they
have no such matching features. The operation
@ depends on the type of mapping from the
model to the image feature space, which varies
for the particular recognition task. In this pa-
per we will use translation (vector summation),
but other transformations are possible.

To determine the values of {S,L} we use the
maximum a posteriori (MAP) estimate

{S*,L*} = arg max Pr(S,L|I).

Bayes rule then implies

{8*,L*} = arg max Pr(I|S,L)Pr(S)Pr(L) (1)

assuming that S and L are a priori indepen-
dent. The prior distributions Pr(S) and Pr(L)
are discussed in section 2.1. We assume that
the prior distribution of S is described by a cer-
tain Markov random field, thus allowing for spa-
tial dependencies among the S;. The likelihood
function Pr(I|S, L) is discussed in section 2.2.

Let £ denote a set of possible locations of the
model in the true scene. Then the range of the
location parameter L is £ U () where the extra
value (0 implies that the model is not in the
scene. The basic idea of our recognition frame-
work is to report a match between the model
and the observed scene if and only if

S*#£0 and L*#0. (2)

In section 2.3 we develop the test in (2) for the
model specified in 2.1 and 2.2.



2.1 Prior Knowledge

We assume that the prior distribution of the
location parameter L can be described as

Q=p)-f(L) + p-6(L=0) (3)

where f(L) = Pr(L|L € L), the parameter p
is the prior probability that the model is not
present in the scene, and §é(-) equals 1 or 0
depending on whether condition “.” is true or
false. Generally the distribution function f(L)
is uniform over £. However in some applications
f(L) can reflect additional information about
the model’s location. For example, such in-
formation might be available in object tracking
since the current location of the model can be
estimated from previous iterations. The value
of the constant p may be anywhere in the range
[0,1). In section 2.3 we will see that p appears
in our recognition technique only as a threshold
for deciding whether or not the model is present
given the image.

Pr(L) =

We assume that the collection of boolean vari-
ables, S, indicating the presence or absence of
each feature, forms a Markov random field in-
dependent of L. More specifically, the prior dis-
tribution of S is described by the Gibbs! distri-
bution

Pr{S} « exp{—z a-(1-25;)

e M

- Zﬂ{z‘,j}'5(5i7é51)} (4)
(i3}

where the second summation is over all distinct
unordered pairs of model features.

The motivation for this model is that Pr(S) cap-
tures the probability that features will not be
matched even though they are present in the
true scene, given some fixed location, L. Such
non-matches could be due to occlusion, feature
extraction error, or other causes. The param-
eter a« > 0 is a penalty for such non-matching
features. The coefficient (¢; ;3 > 0 specifies a
strength of interaction between model features
¢ and j. For tractability, we consider only pair-
wise interaction between features. Nevertheless,

1See [Li, 1995] for more details on Gibbs distribution.

the pairwise interaction model provided by this
form of Gibbs distribution is rich enough to cap-
ture one important intuitive property: a priori
it is less likely that a feature will be un-matched
if other features of the model have a match.
Note that if all By; ;3 = 0 then there is no inter-
action between the features and the S;’s become
independent Bernoulli variables with probabil-
ity of success Pr(S; =1) =e*/(1+e%*) > 0.5.

2.2 Likelihood Function

The features of the observed image I may ap-
pear differently from the features of the un-
known true scene I due to a number of factors.
This includes sensor noise, errors of feature ex-
traction algorithms (e.g. edge detection), and
others. It is the purpose of the likelihood func-
tion to describe these differences in probabilistic
terms.

We assume that the likelihood function is given
by

Pr(I|S,L) o [ ¢:(I|Si,L) (5)

icM

where g;(-) is a likelihood function correspond-
ing to the ¢th feature of the model. If S; =0 or
L = () then g;(I|S;, L) is the likelihood of I given
that the true scene does not contain the ¢th fea-
ture of the model. We assume that all cases of
mismatching feature have the same likelihood.
That is, for any 1 € M and L € £

gi(I11,0) = ¢:(110,0) = g:(110, L) = Co  (6)

where Cy is a positive constant.

If L € £ then ¢;(I|1, L) is the likelihood of ob-
serving image I given that the i-th feature of
the model is at location (L & M;) in the fea-
ture space of the true scene I7. The choice of
gi(I|1, L) for L € £ will depend on the particu-
lar application.

Example 1. (Recognition based on edges)
Consider an edge-based object matching prob-
lem, where all features of the model are edge
pixels. We observe a set of image features I ob-
tained by an intensity edge detection algorithm.
One reasonable choice of g;(I|1,L) for L € L is

gi(Il1,L) = C1-g(dr(L & M;)) (7)



where dj(-) is a distance transform of the im-
age features I. That is, the value of d;(p) is
the distance from p to the nearest feature in I.
The function g(-) is some probability distribu-
tion that is a function of the distance to the
nearest feature. Normally, g is a distribution
concentrated around zero. The underlying in-
tuition is that if if the true scene I has an edge
feature located at (L @ M;) then the observed
image I should contain an edge nearby. Thus
the distance transform dr(L @ M;) will be small
with large probability. A number of existing
recognition schemes use functions of this form,
including Hausdorff matching [Huttenlocher et
al., 1993].

2.3 MAP Estimation

By substituting (3), (4), (5) into (1) and then
taking the negative logarithm of the obtained
equation we can show that MAP estimates
{S*, L*} minimize the value of the posterior en-
ergy function

E(S,L) =

B Hy(S)—Inf(L) — In(l—p) ifLeL
_{ H(S) — Inp ifL =10
where
HL(S) = D Buj-6(Si#S;) (8)

{i.g}

+ > (a-(1-8;)—Ing(I|S;, L)).
eM

Our goal is to find {S*, L*}. The main technical
difficulty is to determine {S, L} that minimize
Hp(S)—In f(L) for L € L. In general this can
be done by computing a minimum cut of an ap-
propriate graph (see in [Greig et al., 1989] and
[Boykov et al., 1998]). In section 3 we consider
some special cases where no sophisticated algo-
rithmic scheme is needed to obtain {$, L}. For
the moment assume that {S, L} are given.

Consider Hr(S) for L = (. Equation (6) implies
that Hg(S) is minimized by the configuration
S =1 where all S; = 1. If BE(S,L) > E(1,0)
then {S*, L*} = {1,0}. According to (2), in
this case we report that the model is not rec-
ognized in the scene. If E(S, L) < E(1,0) then

{S8*,L*} = {S,L}. In this case L* € L. Nev-
ertheless, if S = 0 we would still report the
absence of the model in the scene.

Finally, our recognition framework can be sum-
marized as follows. The match between the
model and the observed scene is reported if and
only if $ 0 and

H;(8) —nf(i) < m-lncioﬂnl p” )
where (9) is derived from the inequality
E(S,L) < E(1,0). The right hand side in (9)
is a constant that represents a certain decision
threshold. Note that this decision threshold de-
pends on two things: first, the prior probabil-
ity of occlusion, p; and second, the product of
the number of model features, m, with the log-
likelihood of a mismatch, Cg.

3 Discussion of special cases

In this section we identify some interesting
properties of our recognition framework by con-
sidering several special cases. We concentrate
on the problem of finding an optimal match con-
figuration Sy that minimizes Hy(S) at a fixed
location L € L.

In section 3.1 we show that Hausdorff match-
ing is a special case of our framework. In sec-
tion 3.2 we discuss models where some neighbor-
hood system is imposed over the features. For
such models our framework yields a simple tech-
nique which we call spatially coherent matching.
Spatially coherent matching is a natural gener-
alization of the Hausdorff matching.

3.1 Hausdorff matching

In this section we show that Hausdorff match-
ing is a special case of our framework where the
strength of interaction between features of the
model is uniform, that is, fy; ;3 = § for all {7, j}
where (3 is a non-negative constant. The classi-
cal Hausdorff distance is a max-min measure for
comparing two sets for which there is some un-
derlying distance function on pairs of elements,
one from each set. The application of Hausdorff
matching in computer vision has used a general-
ization of this classical measure [Huttenlocher et



al., 1993], based on computing a quantile rather
than maximum of distances.

One form of the generalized Hausdorff measure
counts the number of model features that are
within some distance r of the nearest image fea-
ture. Let My ={i € M : di(L & M;) < r} de-
note the subset of model features lying within
distance r of image features, when the model is
positioned at L. Then the model is matched if
and only if the number of elements in this sub-
set, | Mg/, is larger than some critical fraction of
the total number of model features, m.

Thus, as in Example 1 we assume that
9:i(I|1,L) = Cy - g(dr(L & M;)), and moreover
we use the particular function,

(@ % if d<r
7= 0 if d>r

where r is the distance to the nearest model
feature used in Hausdorff matching.

We will need the following notation. Any con-
figuration S is uniquely defined by a collection
of integers 1g = {i € M : S; = 1} which is the
subset of model features assigned a match by S.
Consider also 0g = {i € M : S; = 0}. Note that
for any configuration S we have 1 U0g = M
and 1g N 0g = 0. Therefore, m = |1g| + [0g|.

Our approach is based on minimizing the func-
tion Hr(S) in (8) for a fixed location L € L.
Note that if d7(L @ M;) > r then g;(I|1,L) =0.
This means that the likelihood of a match for
a feature ¢ € M is zero if the image I does not
contain any features near L@ M;. Thus, it does
not make any sense to assign S; = 1 if the ith
feature of the model is such that dy (L& M;) > r,
and we must have 1g C M. Formally speak-
ing, it is easy to check that 1g ¢ My im-
plies Hp(S) = oo. If 1g C My then the
second summation in (8) can be rewritten as
0s| - (@ —InCp) — |Lg| - In L.

The assumption that 8 ;3 = B for all {i,j}
simplifies the first term of H(S) in (8) to 3 -
|1s|-|0g|. Since |0g| = m—|1g| then Hr(S) can
be rewritten as a function of a single scalar

Blls)) i 15 C My

(10)
o0 if 1lg §Z My,

Hp(S) = {

B-z-(m—zx) —m-(a+ln&)

h(a:) - rCo

+ m-(a—1nCp)

is a concave down parabola.

Now we can show how to find a configura-
tion Sr that minimizes Hr(S) for a fixed L.
Equation (10) implies that 0 < |1g] < |Mp]|.
Thus h(|1g|) is minimized by either |[1g| = 0 or
|1g| = |ML|. It is straightforward to check that
h(|ML|) < h(0) if and only if |Mr|> K where

a+1n%1
K = m-|———2].
< p )

Consequently, S, # 0 if and only if |[My| > K
which is the Hausdorff test described above.

(11)

3.2 Spatially Coherent Matching

In this section we consider models where certain
pairs of features can be viewed as local neigh-
bors. One simple kind of model with a natural
local neighborhood system is successive points
in an edge chain, as illustrated in figure 1. Let
N denote a set of all pairs of neighboring fea-
tures in a given model M. We assume that
By = B+ B if the features {1,j} € Nu
are neighbors and f(; ;3 = [ if the features
{1,7} & N are not neighbors. The coefficients
(G and [y are some nonnegative constants. It is
reasonable to expect that two neighboring fea-
tures are more likely to have the same label than
a pair of features isolated from each other. This
type of interaction between model features gen-
eralizes the example in section 3.1.

We assume that the likelihood g; is defined the
same way as in section 3.1. Then equation (8)
can be written as

-b(S) + h(]1 if 1 M
HL(S):{ﬂN ($)+h(1s) it 1s € My
o0 if 1 ¢ Mg,

where b(S) = |{i,j} € Nu : Si # Sj| de-

notes the number of pairs of neighboring fea-
tures assigned opposite labels by the configura-
tion S. The rest of notation is borrowed from
section 3.1.



Figure 1: Example of a model with the chain
neighborhood system. The neigh-
borhood system AN} is represented
by edges in the feature space of the
model.

We now introduce a technique that approxi-
mately obtains the configuration Sz minimiz-
ing Hr(S) for a fixed location L. We call this
technique spatially coherent matching. It can be
seen as a generalization of Hausdorff matching
that requires matching features to be coherent
in the neighborhood system of the model.

We use some of the notation from Section 3.1.
Recall that My = {i € M : d;(L & M;) < r}
is the subset of model features lying within
distance r of image features, when the model
is positioned at L. The formula for Hp(S)
above implies that 1g¢ C My. Thus, we can
think of My as a set of matchable model fea-
tures for a given location L. In addition, we
define a subset of unmatchable model features
Upb ={t € M | di(L® M;) > r} that also
corresponds to a fixed location L. The set Uy
consists of model features that are greater than
distance r from any image features. Note that
U, = M-—Mjy. Since 1¢ C My, then the features
in Uy, must be mismatched (i.e., Uy C Og).

The main idea of the spatially coherent match-
ing scheme is to require that matching features
should form large connected groups. There
should be no isolated matches. Assume that
~(i,j) denotes the number of chains in the
shortest sequence {%,i1}, {i1,%2}, ..., {ix_1,7}
in M connecting two feature i and j in M.
Let By C My, denote the subset of features in
My that are “near” features of Ur. That is,
Br={ie My |3j€UL~(j) <R}, where R

Figure 2: The features of M are highlighted
by shading. The unmatchable fea-
tures Uy, are white. The boundary
features By for R = 2 are shown
black. In this case 1z = G1 U Gs.

is a fixed integer parameter. We will refer to By,
as a boundary of the set of matchable features
M7y, Consider an example in figure 2 where the
matchable features M are highlighted by shad-
ing and the unmatchable features Uy, are white.
The black features in figure 2 show the bound-
ary By for R = 2. The locally coherent match-
ing technique works as follows. The main test
is

|Mr|—|Br| > K (12)

where K is the same as in (11). Note that
|Mpr| — |Bgr| is the number of non-boundary
features in My. If (12) is false then Sp = 0
and there is no match. If the number of non-
boundary features is sufficiently large so that
(12) holds then the matching configuration is
S = S where

ls = U G (13)

Gegy : G¢ By,

and G = {G1,G2,...,Gy, } is the set of all con-
nected components (or groups) in a given M.
Each group G € Gr is a subset of matchable
features connected under the neighborhood sys-
tem Nys. For example, in figure 2 the features
of My, form four groups G, = {G1,G2,G3,G4}.
Note that in (13) we include groups G which
have some non-boundary features. Therefore,
the match could be assigned only to those fea-
tures which belong to sufficiently large con-
nected components in M. In the example of
figure 2 we have 15 = G1 U G2 since G1 and G2
are the only groups in My that contain some
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a) A model. b) An image. The model is

in the center.

Figure 3: Monte Carlo experiments.

non-boundary features. The groups G3 and G4
are discarded because they are too small and lie
completely inside the boundary By.

The spatially coherent matching technique is
easy to implement. Note that in practice the
boundary By can be often approximated by
morphological dilation of the unmatchable fea-
tures Up in the model’s feature space by the
radius R and then collecting the matchable fea-
tures in M7y, that lie in the dilated area.

The spatially coherent matching method is a
simple generalization of the Hausdorff match-
ing technique explained in Section 3.1. Note
that the size of the boundary |Bp| is small if
the features in My are grouped in large con-
nected blobs and |By| is large if the matchable
features are isolated from each other. Therefore,
spatially coherent matching technique is reluc-
tant to match if the features in M7y, are scattered
in small groups even if the size of M is large.
In contrast, the Hausdorff matching cares only
about the size of M and ignores connectedness.
Note that the spatially coherent matching tech-
nique is equivalent to the Hausdorff matching
when R = 0.

This spatially coherent matching technique can
be related to the graph-based methods, and in
fact provide a solution for a model with a chain
neighborhood system introduced above given
that By = R - (- m. Due to space limitations
we do not discuss this further here.

clut=3% occl=20% clut=5% occl=20%

clut=3% occl=40%  clut=5% occl=40%

Figure 4: ROC curves.

4 Experimental results

In order to evaluate the new recognition mea-
sure developed in this paper, we have run a
series of experiments using Monte Carlo tech-
niques to estimate Receiver Operating Charac-
teristic (ROC) curves for each measure. A ROC
curve plots the probability of detection along
the y-axis and the probability of false alarm
along the z-axis. Thus, the ideal recognition
algorithms would produce results near the top
left of the graph (low false alarm and high de-
tection probabilities).

We have estimated ROC curves for the mea-
sures described above by performing matching
in synthetic images and using the matches found
in these images to estimate the curve over a
range of possible parameter settings. 1000 test
images were used in the experiments, and were
generated according to the following procedure.
Random chains of edge pixels with a uniform
distribution of lengths between 20 and 60 pix-
els were generated in a 150 x 150 image until a
predetermined fraction of the image was covered
with such chains. Curved chains were generated
by changing the orientation of the chain at each
pixel by a value selected from a uniform distri-



bution between —% and +3%. An instance of a
model image was then placed in the image, af-
ter rotating, scaling, and translating the model
image by random values. The scale change was
limited to £10% and the rotation change was
limited to +{g. Occlusion was simulated by
erasing the pixels corresponding to a connected
chain of the model image pixels. Gaussian noise
was added to the locations of the model image
pixels (o = 0.25). The pixel coordinates were
finally rounded to the closest integer.

For the experiments reported here, we per-
formed recognition using the 56 x 34 model im-
age shown in Figure 3(a). An example of a syn-
thetic image generated using this model image
and the procedure described above is shown in
Figure 3(b). In each trial, a given matching
measure with a given parameter value was used
to find all the matches of the model to the im-
age. A trial was said to find the correct object if
the position (considering only translation here)
of one of the matches was within three pixels
of the correct location of the object in the im-
age. A trial was said to find a false positive if
any match was found outside of this range (and
that match was not contiguous with a correct
match position).

Figure 4 shows the ROC curves corresponding
to experiments with different levels of model
occlusion and image clutter. The black curve
shows the best results we could obtain from the
general graph approach. The gray curves corre-
spond to the spatially coherent matching tech-
nique for various values of R € [0,25]. As R
gets larger, up to 20 or 21, the results improve,
so the curves closer to the top left are for larger
values of R. For even larger values of R, which
we do not show, the ROC curves rapidly de-
teriorate. It is interesting to note that given
this particular model, a distance of R = 25
corresponds approximately to the radius of the
model. Thus the performance does not deterio-
rate until the coherence region begins connect-
ing together very distant pieces of the model.

Note that the case of R = 0 corresponds to
Hausdorff matching. Thus the spatial coher-
ence approach plays a large role in improving
the quality of the match, because R = 0 has the

worst matching performance. The value of R
does not make a big difference for lower clutter
or occlusion cases (top row of the figure), but
makes a very large difference when these are
larger (bottom row of the figure). Note that
in [Olson and Huttenlocher, 1997], using the
same Monte Carlo framework, it was shown that
Hausdorff matching works better than a num-
ber of other methods including binary correla-
tion and Chamfer matching. Thus these results
indicate that spatially coherent matching is a
substantial improvement over other commonly
used binary image matching techniques.
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