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Abstract

We consider the problem of mazimum a posteriori (MAP) restoration of multicolor images
where each pizel has been degraded by independent arbitrary noise. We assume that the
prior distribution is given by a Markov random field with only pairwise site interactions.
Two classes of site interactions are considered: two-valued site interactions, which form a
generalized Potts model; and linear site interactions. We give efficient algorithms based on
graph cuts for both classes. The MAP estimate for a generalized Potts model can be com-
puted by solving a multiway minimum cut problem on a graph. While this graph problem is
computationally intractable, there are fast algorithms for computing provably good approxi-
mations. The MAP estimate with linear site interactions can be computed exactly by solving
a minimum cut problem on a graph. This can be performed in nearly linear time.

1 Introduction

Many problems in image analysis can be formulated in a Bayesian framework, as proposed by,
e.g., Geman and Geman (1984) and Besag (1986) . For image restoration, the true image is
viewed as the realization of a Markov random field (MRF), whose prior distribution captures
the spatial smoothness of an arbitrary scene. This true image is then degraded by noise to
produce the observed image. The image restoration task is to compute the maximum a
posteriori (MAP) estimate of the true image. The major difficulty with this approach is the
extremely large computational cost, since it requires solving a global optimization problem
in a space with very high dimension.

Several authors have given efficient methods for MAP estimation based on graph theory,
using minimum cuts (or equivalently, maximum flows). Greig et al. (1989) showed that for a
degraded two-color scene, the binary MAP estimate can be computed exactly via graph cuts.
Ferrari et al. have addressed the multicolor case, although under restricted noise models.
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Ferrari et al. (1995) gave a method for approximating the MAP estimate for multicolored
images with a Potts model prior, using a Bernoulli field noise model. With this noise model,
the true intensity is observed with probability ¢, and with probability 1 — € a different
uniformly chosen intensity is observed. Ferrari et al. (1997) gave an exact solution for the
MAP estimate with a prior that is close to the Potts model, under a noise model which acts
independently on each bit of a pixel’s intensity. With this noise model (which is common in
communications theory), if the true intensity at a pixel is 128, the observed intensity is as
likely to be 129 as 0.

We address the multicolor restoration problem under arbitrary noise that acts indepen-
dently at each pixel, using two different smoothness priors. The first smoothness prior we
investigate is a generalized Potts model; under this prior, the MAP estimate can be com-
puted by solving a multiway minimum cut problem on a graph. This graph problem was
shown by Dahlhaus et al. (1994) to be NP-complete, so it very likely requires exponential
time. However, there are fast methods for computing a provably good approximation. The
second smoothness prior involves linear site interactions; here, the exact MAP estimate can
be computed by solving a standard two terminal minimum cut problem, which can be done
in nearly linear time.

This paper begins with a brief review of Bayesian image restoration and MRF’s. In
section 3 we present a generalized Potts model, show that the MAP estimate can be obtained
by finding a minimum multiway cut on a graph, and propose an efficient approximating
algorithm. In section 4 the linear site interaction model is described, and a method is given
to efficiently compute the MAP estimate by finding a minimum cut on a graph. Finally, in
section 5 some experimental results are provided.

2 Bayesian image restoration

Many problems in spatial statistics require estimating some spatially varying quantity from
noisy measurements. Image processing is one area in which such problems arise, but there
are others (see Besag (1974)) . These problems can be naturally formulated in a Bayesian
framework using Markov Random Fields, which were popularized for images by Geman and
Geman (1986) . In this framework, the task is to find the maximum a posteriori (MAP)
estimate of the underlying quantity. Bayes’ rule states that the posterior probability Pr(f|O)
of the hypothesis f given the observations O is proportional to the product of the likelihood
Pr(O|f) and the prior probability Pr(f). The likelihood models the sensor noise, and the
prior describes preferences among different hypotheses.

A Markov Random Field has several components: a set P = {1,...,m} of sites p, which
will be pixels; a neighborhood system A" = { N, | p € P } where each N, is a subset of pixels
in P describing the neighbors of p; and a field (or set) of random variables F = { F}, | p € P }.
Each random variable F), takes a value f, in some set £ = {l4,...,{} of the possible labels
(i.e., intensities). Following Li (1995) a joint event {Fy = fi,..., Fy = fn} is abbreviated
as F' = f where f = { f, | p € P} is a configuration of F, corresponding to a realization of
the field. For simplicity, we will write Pr(F' = f) as Pr(f) and Pr(F, = f,) as Pr(f,). In



order to be an MRF, the random variables in the field F' must satisfy

Pr(f) >0, Vfe L™ (positivity)
Pr(folfr—(py) = Pr(fplfn;), VD€ P, (Markovianity)

where L™ = £ x ... x £ and fg represents a joint event { F, = f, | p € S} for any S C P.
The positivity condition exists for technical reasons. The Markov condition states that each
random variable F}, depends on other random variables in F' only through its neighbors in
Fy, ={Fy|q € Np}.

The key result concerning Markov Random Fields is the Hammersley-Clifford theorem,
described in Besag (1986). This states that the probability of a particular configuration
Pr(f) x exp(— X ¢ Ve(f)), where the sum is over all cliques in the neighborhood system
N. Here, V¢ is a clique potential, which describes the prior probability of a particular
realization of the elements of the clique C'. In many applications, there are only pairwise
site interactions, so

Pr(f) oc exp ( Z Z Vi) (for fo ) .

PEP gEN,

In general, the field F' is not directly observable in the experiment. We have to estimate
its realized configuration f based on the observation O, which is related to f by means of the
likelihood function Pr(O|f). In the context of the image restoration problem the observation
O is the joint event {I, =i,} over all p € P where I, denotes the observable intensity at
pixel p and 4, is its particular realization. If F, denotes the true intensity at p then assuming
ii.d. noise

Pr(O|f) = H 9(ip, fp)

pEP

where ¢(i,, fp) = Pr(I, = i,|F, = f,) represents the sensor noise model.

We wish to obtain the configuration f € £™ that maximizes the posterior probability
Pr(f|O). Bayes’ law tells us that Pr(f|O) o Pr(O|f)Pr(f). It follows that our MAP estimate
f should minimize the energy function

E(f) = Z Z Vi) (o fo) — Z In (9(ip, f»))

PEP qEN, pEP

In sections 3 and 4 we will address two different choices of the clique potential V{, 4.

3 The generalized Potts model

In the generalized Potts model, the pairwise clique potential is based on the unit impulse
function 6(-). More precisely,

V(p,q)(fp’ fq) = u{p,q}(l - é(fp - fq))-

Note that {p, ¢} is a set, not a tuple. This implies that V(, ,\(fp, fo) = Vigp)(fe» fp), that
is, the corresponding MRF is isotropic. Since the value of uy, .3 depends on the relative
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position of the clique {p,q} in P then, in general, our MRF is nonhomogeneous. If the
coefficient g, 3 = const > 0 does not depend on {p, ¢}, the clique potential V{, ) results in
the homogeneous model introduced by Potts (1952) .

The prior probability for a generalized Potts model is thus

Pr(f) o exp (_ Z 2ugp (1 = 6(fp — fq)))

{pr.9}€én

where &y is the set of distinct {p,q} such that ¢ € NV,. Each term in the summation above
equals 2ug, o1 if p and ¢ have different labels (f, # f;) and zero otherwise. The coefficient
Upq} Can be interpreted as a cost of a “discontinuity” between p and g, that is, the penalty
for assigning different labels to neighboring pixels p and ¢q. The sum in the exponent above
is proportional to the total cost of discontinuities in f. Thus, the prior probability Pr(f) is
larger for configurations f with fewer discontinuities.

The posterior energy function for a generalized Potts model is

E(f) = Z 2“’{?,(1}(1 - 6(fp - fq)) - Z ln Zpa fp (1)

{p.a}eén pEP

The MAP estimate f minimizes E(f). Thus, it should both have a small number of discon-
tinuities and agree with the observed data.

We now show that minimizing the energy function E(f) in (1) over f € L™ is equivalent
to solving a multiway cut problem on a certain graph. We first give another formulation
of the posterior energy minimization problem that is equivalent to (1). This formulation,
shown in equation (2), reduces the search space for f and simplifies our transition to the
graph problem. Then we construct a particular graph, and prove that solving the multiway
cut problem on this graph is equivalent to minimizing the energy function of equation (2).

3.1 Reformulating the energy function

We want to find f* € £™ that minimizes E(f) in (1). It is straightforward to reduce the
search space for f*. Assuming E(f*) is finite, we can always find some constant K(p) for
each pixel p satisfying

_ln(g(iwf;)) <  K(p)

For example, if no better argument is available we can always take K(p) = K = E(f) where
f is any fixed configuration of F' such that E(f) is finite.
For a given collection of constants K (p) we define

= {lel: —In(g(ip, 1)) < K(p)}

for each pixel pin P. Each £, prunes out a set of labels which cannot be assigned to p in the
optimal solution. For example, if we take K(p) = E(f) as suggested above, then for I ¢ £,
a single sensor noise term —In(g(é,,7)) in (1) will exceed the total value of the posterior
energy function E(f) at some configuration f. Since fy € L, then each £, is a nonempty
set. Define also £ = £; X ... X L,,. Since f* € L, our search can be restrlcted to the set L.
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It is possible to rewrite —In(g(é,, f,)) as

K(p)+ >_ (In(g(ip, 1)) + K(p))

leLy
1# fp

where K(p) is some constant that does not depend on f,. It follows that minimizing E(f)
in (1) is equivalent to minimizing

E(f) = Z 2u{P,q}(l - 5(fp - fq)) + Z Z h(i,p, l) (2)
{p.a}eln pEP llil]lc:

where h(i,p,l) = In(g(ip, 1)) + K(p) and the minimization takes place over f € £. Note that
h(i,p,1) > 0 for any p € P and for any [ € L,

3.2 Multiway cut formulation

Consider a graph G = (V, ) with non-negative edge weights, along with a set of terminal
vertices £ C V. A subset of edges C C & is called a multiway cut if the terminals are
completely separated in the induced graph G(C) = (V,€ — C). The cost of the cut C is
denoted by |C| and equals the sum of its edge weights. The multiway cut problem is to find
the minimum cost multiway cut.

We now show that the minimization problem in (2) is equivalent to a multiway cut
problem. We begin by constructing G. We take ¥V = P U L. This means that G contains two
types of vertices: p-vertices (pixels) and [-vertices (labels). Note that [-vertices will serve
as terminals for our multiway cut problem. Two p-vertices are connected by an edge if and
only if the corresponding pixels are neighbors in A/. Therefore, the set £y corresponds to
the set of edges between p-vertices. We will refer to elements of £y as n-links. Each n-link
{p,q} € En is assigned a weight

Wip,g} = 2U{p,q}- (3)

A p-vertex is connected by an edge to an [-vertex if and only if [ € £,. An edge {p,[}
that connects a p-vertex with a terminal (an [-vertex) will be called a t-link and the set of
all such edges will be denoted by £r. Each ¢-link {p,(} € 7 is assigned a weight

wipny = h(i,p,1) + ZM Wip,q}- (4)
qEND

Note that each p-vertex is connected to at least one terminal since £, is non-empty. No
edge connects terminals directly to each other. Therefore, £ = €5 U 7. Figure 1 shows the
general structure of the graph G.

Since a multiway cut separates all terminals it can leave at most one ¢-link at each p-
vertex. A multiway cut C is called feasible if each p-vertex is left with exactly one ¢-link. Each
feasible multiway cut C corresponds to some configuration f€ in £ in an obvious manner:
simply assign the label [ to all pixels p which are ¢-linked to the [-vertex in G(C).

Lemma 1 A minimum cost multiway cut C on G for terminals £ must be feasible.
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terminals (I-vertices or labels)

p-vertices (pixels)

Figure 1: An example of the graph G = (V, ) where the terminals are £ = {ly,...,l;} and
p-vertices are elements of P = {1,...,p,q,...,m}. Each p-vertex is connected to at least
one terminal.

PROOF: Due to equation (4), each t-link {p,!} has a weight larger then the sum of weights
of all n-links adjacent to the p-vertex. If a multiway cut of minimum cost is not feasible
then there exists some p-vertex with no ¢-link left. In such a case we will obtain a smaller
cut by returning to the graph one ¢-link {p, !} for an arbitrary [ € £, and cutting all n-links
adjacent to this p-vertex. [ |

Theorem 1 If C is a minimum cost multiway cut on G, then f€ minimizes E(f) in (1).

ProoF: Lemma 1 allows to concentrate on feasible multiway cuts only. Note that distinct
feasible multiway cuts C1 and C2 can induce the same configuration f¢! = f¢2. However,
among all feasible cuts corresponding to the same f € £ there is a unique irreducible cut
C, where irreducible means that it does not sever n-links between two p-vertices connected
to the same terminal in G(C). It follows that there is a one to one correspondence between
configurations f in £ and irreducible feasible multiway cuts on the G.

Obviously, the minimum multiway cut should be both feasible and irreducible. To con-
clude the theorem it suffices to show that the cost of any irreducible feasible multiway cut C
satisfies |C| = A + E(f€), where A is the same constant for all irreducible feasible multiway
cuts. Since C is feasible, the sum of the weights for ¢-links in C is equal to

E Z Wip,1}-

pEP €Ly
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Since C is irreducible, the sum of weights for the n-links in the cut is equal to

Z w{p,q}(l - 6(f§ - ch))

{r.a}€én

The theorem now follows from (3) and (4). ]

3.3 Multiway cut minimization

While the general multiway minimum cut problem is NP-complete, there are provably good
approximations with near linear running time (see Dahlhaus et al., 1992 ), and this is an area
of active research. Approximating cuts, however, should be used carefully. If C approximates
the minimum multiway cut on G within some known bounds, the value of E(f¢) might not
be within the same bounds with respect to the exact minimum of the posterior energy in
(1). For example, cuts produced by the Dahlhaus algorithm are not guaranteed to be even
feasible. Here we describe a method that greedily reduces the cost of multiway cuts on G.
Our algorithm generates a cut C such that f€ is a local minimum of the posterior energy
function (1) in a certain strong sense described below.

Informally speaking, each cut separates pixels into distinct groups where pixels of each
group V, are assigned the same label [. Our algorithm considers only irreducible feasible cuts
on G. Any such cut can be uniquely represented by a feasible partition Py = {V; |1 € L} of
the set V where [ € V; and p € V, implies [ € £,,. An irreducible feasible cut C corresponds
to Py where each V; contains [ and all pixels p € V such that fg = [. As an initial
solution we can take any irreducible feasible cut. For example, consider a cut where V;, =
{}U{peV|i=minL,}.

At each iteration we consider a fixed pair of distinct labels {/, \} C L. The basic operation
is to improve the current cut C, that is the current feasible partition Py, by reallocating pixels
in VUV, between the terminals [ and A\. More specifically, we solve a standard two terminal
min cut problem on a graph Gy xy = (Vg Eqay), where Viay = ViUV, and &y yy includes
all edges in & that connect vertices in V3. The optimal cut on Gy )y divides the pixels
in Vi, between the terminals [ and X and, thus, generates the new sets V; and V}. This
yields a new feasible partition P), corresponding to an irreducible feasible cut C’ such that
|C'| < |C|. If the inequality is strict, we call the iteration successful and accept the new cut
C'. If not, we reject the new partition and stick to the old cut C.

At each iteration we take a new pair of terminals until all distinct pairs were considered.
Then, we start a new cycle of iterations and consider the pairs of terminals all over again. The
algorithm stops when no successful iterations were made in a cycle. The obtained multiway
cut C yields f€ with the following property: the value of the energy function F(fC€) cannot be
decreased by switching any subset of pixels with one common label [ to any other common
label \.! This means that f¢ achieves a local minimum of F in a richer “move space” than
the obvious one where a move changes the label of a single pixel. We are currently developing
a more sophisticated algorithm which achieves an even stronger local minimum, where the
energy function cannot be decreased by switching any set of pixels to a common label .

If such a decrease in the energy function was possible then the algorithm would find it by successfully
reallocating pixels in V; U V) between the terminals [ and A.



Each cycle of the algorithm is quadratic in the number of labels and has the same effec-
tively linear time complexity in the number of nodes as a standard min cut algorithm. If
all edge weights are integers or rational numbers, the algorithm is guaranteed to terminate
in finite number of cycles. In general, we do not have any bounds on the number of cycles
it takes to complete the algorithm. Nevertheless, in the image restorations applications we
considered the algorithm stops after three or four cycles. Moreover, most of the improve-
ments are made at the first cycle. In the remaining cycles the number of pixels where the
intensity is changed becomes increasingly insignificant. In section 5 we discuss the results in
more details.

4 Linear site interactions

We now consider linear site interactions, where

Vipo (o o) = wipal o — fol-

This yields the prior probability

Pr(f) oc exp (_ Z 2ugpgy|fr — fq|) )

{p,q}€én

and the posterior energy function to be minimized

E(f) = Z 2u{P74}|fp - fq| - Zln (g(ipafp))' (5)

{r,a}€én pEP

The MAP estimate, i.e. the configuration f that minimizes E(f), can be computed by
solving a standard two terminal minimum cut problem on a graph.

4.1 Two terminal cut formulation

To minimize E(f) we apply our graph techniques of section 3.2. Consider a graph G defined
as follows. There are two terminals: the source R and the sink S. For each pixel p we create
a set of vertices py,...,pr_1. We connect them by ¢-links {#f,... ¢} where ) = {R,p1},
t? = {p; 1,p;}, and t} = {pr 1,S}. For each pair of neighboring pixels p,q and for each
Jj € {1,...,k — 1} we create an n-link {p;,q;} with weight wg, 1 = 2uy, 4. FEach t-link
t¥ is assigned a weight K, — In(g(4,p,l;)) where K, is any constant such that K, > (k —
1) Ygen, Wip,g3- The structure of a subgraph of G corresponding to a pair of neighboring
pixels p and ¢ is shown in figure 2.

A cut on the graph G will break at least one t-link for each pixel; we call a cut feasible if it
breaks exactly one t-link for each pixel. Each feasible cut C corresponds to some configuration
f¢ where for each pixel p we take f¢ = I; if the t-link ¢¥ is cut by C.

Lemma 2 A minimum cut C on G must be feasible.



Figure 2: A subgraph of G corresponding to the pixels p and q.

PROOF: Suppose that t2 and ¢} are cut. Then we can find a smaller cut by restoring 0
and breaking n-links {p;,¢;} for all ¢ € N, and 1 < j < k — 1. The cost of the cut will
decrease at least by K, —In(g(7,p,l5)) — (k — 1) Zyen, Wip,q)y Which is strictly positive due to
our choice of K. [

Theorem 2 IfC is a minimum cut on G, then fC minimizes E(f) in (5).

Proor: We follow the same path as in the proof of Theorem 1. A cut C is called irreducible
if it does not sever n-links between vertices connected to the same terminal in G(C). It is easy
to show that there is a one to one correspondence between the set of all irreducible feasible
cuts and the set of all configurations f € £™. Since the minimum cut has to be both feasible
and irreducible it remains to show that the cost of any irreducible feasible cut C satisfies
IC| = A+ E(f€). If C is feasible, the cost of cutting ¢-links is 3" ,cp (Kp — In(g(4, p, ff))) If

C is also irreducible the cost of cutting n-links is ¥, g1een Wipat fS — fE)- u

Theorem 2 shows that finding an MAP estimate of the linear clique potential MRF
described in the beginning of section 4 is equivalent to a standard two terminal minimum
cut problem on the graph G. Since G has only two terminals then the exact solution can
be generated by a standard maximum flow algorithm, such as those given by Ford and
Fulkerson (1962) or Goldberg and Tarjan (1988) . These algorithms have polynomial worst
case complexity and have almost linear running time in many practical applications.

A graph with a similar structure was first suggested by Cox and Roy (1998) for a stereo
correspondence problem. Their approach is not based on MAP-MRF estimation. The dif-
ference between G and their graph lies in the link weights. Our choice of edge weights



(a) The original image. The (b) The noisy image. The dis-
intensities of rectangles are 65, tribution of noise at each pixel
105, 145, 185, and 225. is N(m = 0,02 = 16).

Figure 3: Diamond images.

guarantees the optimality property of Theorem 2. In contrast, the weights use by Roy and
Cox lack theoretical justification. As a result, their algorithm does not appear to have any
optimality properties.

Note that Ishikawa and Geiger (1998) describe an image segmentation technique that
finds the global minimum of an energy function closely related to E(f). Their solution,
developed independently from ours, finds a minimum cut on a graph similar to G except for
some details. For example, their graph is directed and has some infinite capacity links, while
we employ an undirected graph.

5 Experimental results

In this section we discuss image restoration results in examples where an independent Gaus-
sian noise was added to an artificial diamond image shown in Figure 3(a). The diamond
image with the noise added to it is shown in Figure 3(b). For the experiments we assume
that the noisy image represents the observed data and that the distribution function of noise
at each pixel is known. The purpose of the experiment is to run image restoration algorithms
on the observed data shown in Figure 3(b) and then to compare the restored image with
the original (true) diamond image shown in Figure 3(a). The diamond image is used to test
both the Potts model of section 3 and the linear clique potential model of section 4.

5.1 Generalized Potts model

To specify the generalized Potts models we need to choose the coefficients ug, 4. In general,
the coefficients uy, 3 can be assigned different values. For example, this can be done if the
image comes with some prior information about the possible locations of the object edges.
In such a case, one would assign a smaller value to wug, oy if the prior probability of an edge at
{p,q} is high and a larger value otherwise. In the experiments of this subsection we assume
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Figure 4: Generalized Potts model. Error analysis for various values of A.
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Figure 5: Generalized Potts model. Restored images for various values of A.

that no such prior information is available and that discontinuities are equally likely for all
pairs of neighboring pixels. We take u(,, = A where A is some nonnegative constant. We
tested the algorithm of section 3.3 for various values of A. If X is large then the discontinuity
term of the energy function E(f) in (1) become costly while the data term becomes less
important. If X is small then the energy function E(f) is more sensitive to the data term
and ignores discontinuities. Informally speaking, the choice of A reflects our prior view on the
strength of connection between the pixels of the image. Note also that u(, ,, = constimplies
that the specific experiments we consider in this subsection are the case of the standard
homogeneous Potts model.

The images restored from the noisy data can be compared with the true diamond image.
At each pixel p we compute an absolute error e, = |ii — f,| where 4} is the true intensity
at p and f, is the intensity at p obtained by running our algorithm on the image corrupted
by noise. The mean absolute error is an average of e, for all image pixels. The plot in
Figure 4(a) shows the mean absolute error obtained for various values of A\. The plot in
Figure 4(b) shows the number of pixels that differ from their true intensity for different
values of A. The black part of each column represents pixels with absolute errors of size one
and the gray part of each column represents pixels with absolute errors larger than one.

A level of errors for very small \’s is large since in this case the smoothness prior term
of the posterior energy E(f) in (1) is practically negligible. For example, for A = 0.3
the restored image is not very different from the observed noisy data (see Figure 5(a)). If
the value of A becomes larger then the smoothness prior term of the energy function E(f)
becomes more important. As a result, the restored images tend to be smoother and contain
fewer discontinuities. For A = 1.4 the restored image (see Figure 5(b)) is very close to the
original diamond image. In this case only 6% of pixels on the restored image differ from
their intensity in the original image and most of these errors are £1. Note that the plots on
Figure 4 show a wide range of values for A where the level of errors is low.

As the value of A grows the restored images become even smoother. The drawback,
however, is that the data term of the energy function E(f) becomes underrated. For example,
at A = 50 the restored image looks a bit oversmoothed (see Figure 5(c)) and the error
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Figure 6: Linear clique potential results.

statistics noticeably deteriorates: 62% of pixels differ from the true intensity by +1, 3% of
pixels differ by +2, 12% of pixels differ by +3, and only 20% of pixels have the same intensity
as in the original image. If we continue to increase A then at some point the smoothness prior
term of the energy E(f) would force the boundaries between the rectangles to disappear.
Note, however, that such values of A are so large that our computer implementation starts
to overflow before they are reached.

5.2 Linear clique potentials

Discontinuities between the neighboring pixels in the linear clique potential model are pe-
nalized differently than in the generalized Potts model. In the Potts model the cost of
discontinuity between p and ¢ is a fixed constant wy,qy for any |f, — f,| > 0, whereas in
the linear clique potential model the cost is uy, g3 - | fp — fql- The constant wg, ) can still be
viewed as a coefficient reflecting the prior probability of a discontinuity between the neigh-
boring pixels p and g. To test the algorithm of section 4 we consider two different schemes
of assigning these coefficients: in the first scheme we take wug,, = const for all pairs of
neighboring pixels and in the second scheme uy, ,; are assigned different values according to
some prior information on the likely locations of edges in the image.

In the first experiment testing the linear clique potential model we assume that ug, ;3 = A
where )\ is some nonnegative constant. In Figure 6(a) we show the restored image obtained
for A = 0.3 which gave the best error statistics: 69% of pixels have the same intensity as in
the original diamond image, 20% of pixels have +1 errors, 6% of pixels have +2 errors, and
3% of pixels have +3 errors or more. At first, the restored image looks practically identical to
the original image. However, the histogram equated version of the same image (Figure 6(b))
reveals a substantial oversmoothing.

In the second experiment of this subsection we assign different values to the coefficients
U{pq}- We assume that some prior information on the likely location of the edges (or dis-
continuities) in the image is available. For simplicity, we obtain this information from a
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preliminary analysis of the observed data. More specifically, we assign a large value A; to
U{p,q} if the difference in observed intensities |i, —1,| is smaller than some threshold A and we
assign a small value A, to ug,q if the difference |i, —1,| is larger than A. On an intuitive level,
this prior information makes it easier to cut the n-links between the neighboring pixels p and
g where the prior probability of an edge is large. For \; = 0.6, A, = 0.12, and A = 16 we
obtained a restored image with the following error statistics: 93% of pixels have no error, 6%
of pixels have +1 errors, and 1% of pixels have +2 errors or more. In this case the restored
image is also indistinguishable from the true image by a naked eye but its histogram equated
version (see Figure 6(c)) shows no signs of oversmoothing. Thus, the prior information about
the edges helps to improve the error statistics and to avoid oversmoothing.

5.3 Handling smoothly changing intensity

The diamond image in Figure 3(a) has several rectangle-shaped regions where pixels have
identical intensities. In this section we consider a shaded version of the diamond image where
intensities smoothly change within each rectangle from left to right. The shaded diamond
image is shown in Figure 7(a). The gradual change of intensity can be explained by some real
life phenomenon like a change in the light condition. Therefore, the shaded diamond image
provides us with a more realistic example for analysis. As before, we add an independent
Gaussian noise at each pixel. The corrupted version of the image is shown in Figure 7(b).

Restoration of the shaded diamond image turns out to be a more challenging problem for
the generalized Potts model algorithm. This is due to the fact that its prior is not designed
to handle smooth changes in intensities. In case of constant weights us, 3 = A we obtain
the best results for A = 1.0. The restored image is shown in Figure 7(c). The Potts model
algorithm tends to generate vertical stripes that follow the direction of the gradual intensity
change. The error statistics is as follows: 21% of pixels have the same intensity as the original
shaded diamond image, 39% of pixels have +1 errors, 27% of pixels have +2 errors, 13% of
pixels have errors +3 and more.

The linear clique potential model does a better job in case of the shaded diamond image.
We obtained the best results for the variable weights. For simplicity, we used the same
variable weights scheme as in section 5.2. The restored image is shown in Figure 7(d) and
its error statistics is the following: 41% of pixels have no error, 46% of pixels have +1 error,
10% of pixels have +2 error, 3% of pixels have error +3 and more. The tendency to create
the stripes along the direction of the shade is significantly reduced in comparison with the
generalized Potts model.
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(a) the original image (b) the noisy image
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Figure 7: Shaded diamond experiments.
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