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Abstract. An N-dimensional image is divided into “object” and “back-
ground” segments using a graph cut approach. A graph is formed by
connecting all pairs of neighboring image pixels (voxels) by weighted
edges. Certain pixels (voxels) have to be a priori identified as object
or background seeds providing necessary clues about the image content.
Our objective is to find the cheapest way to cut the edges in the graph
so that the object seeds are completely separated from the background
seeds. If the edge cost is a decreasing function of the local intensity gra-
dient then the minimum cost cut should produce an object/background
segmentation with compact boundaries along the high intensity gradient
values in the image. An efficient, globally optimal solution is possible via
standard min-cut/max-flow algorithms for graphs with two terminals.
We applied this technique to interactively segment organs in various 2D
and 3D medical images.

1 Introduction

Many real world applications can strongly benefit from algorithms that can re-
liably segment out objects in images by finding their precise boundaries. One
important example is medical diagnosis MR or CT where the images are used by
the doctor to investigate specific organs of interest. 4D medical images contain-
ing information about 3D volumes moving in time are also available nowadays.
There is simply too much information in these datasets; the doctors need seg-
mentation tools to be able to concentrate on relevant parts of these images.
Precise segmentation of organs would allow accurate measurements, simplify
visualization and, consequently, make the diagnosis more reliable.

There are a large number of contour based segmentation tools that were de-
veloped for 2D images in the past: snakes (e.g. [17,3]), deformable templates
(e.g. [25]), methods computing the shortest path (e.g. [18,6]) and others. Most
of these algorithms cannot be easily generalized to images of higher dimensions.
To locate a boundary of an object in a 2D image these methods rely on lines
(“1D” contours) that can be globally optimized, for example, using dynamic
programming [1,23,10]. In 3D images the object boundaries are surfaces and
the standard dynamic programming or path search methods cannot be applied
directly. Computing an optimal shape for a deformable template of a boundary
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becomes highly untracktable even in 3D, not to mention 4D or higher dimen-
sional images. Gradient descent optimization or variational calculus methods [3,
4] can still be applied but they produce only a local minimum. Thus, the seg-
mentation results may not reflect the global properties of the deformable contour
model. An alternative approach is to segment each of the 2D slices of a 3D vol-
ume separately and then glue the pieces together [3]. The major drawback of
this approach is that the boundaries in each slice are independent. The segmen-
tation information is not propagated within the 3D volume and the result can be
spatially incoherent. In [19] a 3D hybrid model is used to smooth the results and
to enforce coherence between the slices. In this case the solution to the model
fitting is computed through gradient descent and, thus, may get stuck at a local
minimum.

Alternatively, there are many region based techniques for image segmenta-
tion: region growing, split-and-merge, and others (see Chapter 10 in [14]). The
general feature of these methods is that they build the segmentation based on
information inside the segments rather than at the boundaries. For example, one
can grow the object segment from given “seeds” by adding neighboring pixels
(voxels) that are “similar” to whatever is already inside. These methods can eas-
ily deal with images of any dimensions. However, the main limitation of many
region based algorithms is their greediness. They often “leak” (i.e. grow segments
where they should not) in places where the boundaries between the objects are
weak or blurry.

Ideally, one would like to have a segmentation based on both region and
contour information. There are many attempts to design such methods. Numer-
ical optimization is the main issue here. General schemes [26] use variational
approach leading to a local minimum. In some special cases of combining re-
gion and contour information [5,16] a globally optimal segmentation is possible
through graph based algorithms. The main problem in [5] and [16] is that their
techniques are restricted to 2D images.

Here we present a new method for image segmentation separating an object
of interest from the background based on graph cuts. Formulating the segmenta-
tion problem as a two terminal graph cut problem allows for a globally optimal
efficient solution in a general N-dimensional setting. Our method has some fea-
tures of both contour and region based algorithms and it addresses many of
their limitations. First of all, our method directly computes the segmentation
boundary by minimizing its cost. The only hard constraint is that the boundary
should separate the object from the background. At the same time our technique
incorporates region information. It is initialized by certain object (and bound-
ary) seeds. There is no prior model of what the boundary should look like or
where it should be located. The method can be applied to images of any dimen-
sions. It can also directly incorporate some region information (see Section 4).
Our algorithm strongly benefits from both “contour” and “region” sides of its
nature. The “region” side allows natural propagation of information throughout
the volume of an N-dimensional image while the “contour” side addresses the
“leaks”.
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It should be noted that graph cuts were used for image segmentation before.
In [24] the image is optimally divided into K parts to minimize the maximum
cut between the segments. In this formulation, however, the segmentation is
strongly biased to very small segments. Shi and Malik [21] try to solve this
problem by normalizing the cost of a cut. The resulting optimization problem is
NP-hard and they use an approximation technique. In [2,15,12] graph cuts are
applied to minimize certain energy functions used in image restoration, stereo,
and other early vision problems. In fact, the optimization scheme that we use
in our algorithm is very similar to [12] and [2]. The main contributions of our
paper is a new concept of object/background segmentation where a cut must
separate the corresponding seed points.

Our method can generate one or a number of isolated segments for the ob-
ject (as well as for the background). Depending on the image data the method
automatically decides which seeds should be grouped into a single object (or
background) segment. Our approach also allows effective interaction with a user.
Initially, the object and background seeds can be specified manually, automat-
ically, or semi-automatically. In the interactive mode, the user can click in the
image to select pixels using a “paint brush” and assign to either the object
of interest or the background. After reviewing the corresponding segmentation,
the user can specify additional object and background seeds depending on the
observed results. To incorporate these new seeds the algorithm can efficiently
adjust the current segmentation without recomputing the whole solution.

Interactive segmentation is becoming more and more popular to alleviate
the problems inherent to fully automatic segmentation which seems to never
be perfect. Our user interface turns out to be identical to the one proposed by
Griffin at al. [13] in the sense that seeds are marked on the image to impose
hard constraints about the object and the background. The difference between
their work and ours lies in the underlying segmentation scheme. They use a
hierarchical clustering technique instead of graph cuts. Since the segmentation
is only region-based, there is no provision to smooth the boundary or minimize
its length. Intelligent paint [20] is also region-based. The image is partitioned
into small homogeneous regions using a watershed scheme. The user can click the
mouse button to select a region where the growing process (paint flow) starts.
Other interactive segmentation systems are edge-based. With intelligent scissors
[18] and live wire [7], the user draws contours interactively to outline an object
of interest in the image. The system computes the best path (sequence of pixels
in the image) from the current mouse position to the last mouse button click
position according to some energy function based on image gradient. Flickner et
al. [8] have used the same concept but the contour is parametrized by a spline to
produce a smooth contour without outlining all the little nooks of the digitized
contour. Vehkoméki et al. [22] propose to presegment the image by grouping
contour fragments to partition the image into closed cycles. Then, when the
user moves the mouse (s)he effectively selects the boundaries between those
partitions.



Proceedings of “MICCAI”, Pittsburgh, PA, October 2000 p.279

In the next section we explain our segmentation algorithm. Section 3 gives
a number of examples where we apply our technique to medical images. In Sec-
tion 3.1 we show that extracting a single closed contour in a 2D image is a simple
special case of our technique. We also demonstrate that with a few simple and
intuitive manipulations a user can always segment an object precisely as (s)he
wants. More general examples of multiple objects and 3D volumes are consid-
ered in Sections 3.2 and 3.3, respectively. Information on possible extensions and
future work is given in Section 4.

2 Segmentation Technique

In this section we provide some technical details about our segmentation tech-
nique. To segment an image we create a graph with nodes corresponding to pixels
(voxels) of the image. There are two additional terminal nodes: an “object” ter-
minal (a source) and a “background” terminal (a sink). The source is connected
by edges to all nodes identified as object seeds and the sink is connected to all
background seeds. For convenience, all edges from the terminals are referred to
as t-links. We assign an infinite cost to all t-links between the seeds and the
terminals.

Pairs of neighboring pixels (voxels) are connected by weighted edges that we
call n-links (neighborhood links). Any kind of neighborhood system can be used.
Costs of n-links can be based on local intensity gradient, Laplacian zero-crossing,
gradient direction, and other criteria (e.g. [18]). The only technical restriction
is that the edge costs should be non-negative. Our simplest implementation
incorporates undirected n-links {p, ¢} between neighboring pixels p and ¢ (see
(a) below) with cost wyy, oy = f(|I, —I,]) where I, and I, are intensities at pixels

pand ¢ and f(z) = K - exp( 7—2 ) is a non-negative decreasing function.
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Such weights encourage segmentation boundaries in places with high intensity
gradient. In some examples we also use directed links (p,q) and (¢, p) between
pixels p and ¢ (see (b)). The weights can be defined as w, ) = max(0, f(|1, —
L) + h- (I, — I;)) where the gradient direction is incorporated. A positive h
forces dark pixels to stay inside the segmentation boundary and bright pixels to
stay outside. A negative h would achieve the opposite effect.

The general graph structure is now completely specified. Some examples are
shown in Figure 1. We draw the segmentation boundary between the object
and the background by finding the minimum cost cut on this graph. A cut is a
subset of edges that separates the source from the sink. The cost of the cut is
the sum of its edge costs'. Due to infinite cost of t-links to seeds, a minimum cut

! In case of directed edges the cost of the cut is the sum of severed edges (p, q) where
node p is left in the part of the graph connected to the source and ¢ is in the part
connected to the sink.
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is guaranteed to separate the object seeds from the background seeds. Note that
locations with high intensity gradient correspond to cheap n-links. Thus, they
are attractive choices for the optimal segmentation boundary. The minimum cut
can be computed exactly in polynomial time using well known algorithms for
two terminal graph cuts, e.g. max-flow [9] or push-relabel [11].

It is important that the algorithm efficiently adjusts the segmentation to in-
corporate any additional seeds that the user might interactively add. We use a
max flow algorithm to determine the minimum cut corresponding to the optimal
segmentation. When a new seed is added to the image, the corresponding t-link
is added to the residual graph that was left at the end of the previous cut compu-
tation. Then, a new optimal cut can be efficiently obtained without recomputing
the whole solution?. Deleting a seed from the image is equivalent to adding a
t-link to the opposite terminal. Thus, it can also be efficiently implemented.
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image background
IS See
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== “é— [
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(a) Segmentation of a single object (b) Segmentation of multiple objects in
in a 2D image. A cut corresponds to a 3D image. The cut separates the ob-
a closed contour separating an object ject seeds from the background seeds
seed from background seeds. and creates two isolated object seg-

ments.
Fig. 1. Examples of graphs for segmentation of 2D and 3D images.

3 Examples

In this section we consider a number of examples that illustrate how our method
can be used to segment medical images. Section 3.1 shows the simplest 2D ex-
periments and explains the main intuitions about our technique. Segmentation
of multiple objects is discussed in Sections 3.2. 3D volume segmentation is ad-
dressed in Section 3.3.

3.1 Single Object in 2D Images

In this section we show an example of the simplest application for our technique.
The goal is to segment an object from the background in a given 2D image. We

2 The exact algorithm is beyond the scope of this paper.
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assume that the object appears as one connected blob. The user places object
seeds and background seeds to define areas that should be separated by the
segmentation.

In Figure 2(a~d) we show the segmentation results for a 2D cardiac MR image.
Our interface allows a user to enter seeds with a brush controlled through a
mouse. The size of the brush can be changed. Throughout the paper we indicate
object and background seeds by bright red and blue colors, respectively. The
pixels that the algorithm assigned to the object segment are highlighted in red
and background pixels appear bluish. In Figure 2(a) there is only one object
segment. In fact, our algorithm is guaranteed to generate a single object segment
when the object seeds form one connected group. The segmentation boundary
defines a contour with the smallest cost among all contours separating the red
(object) seeds from the blue (background) seeds. The computation time on a
Pentium II, 333Mhz, for the segmentation of the 128 x 128 image shown in (a)
is 50 milliseconds.

The example in Figure 2(a) shows that in a simple 2D setting our method
can be used to extract a single closed contour which is what snakes, deformable
templates, or shortest path search algorithms are used for. However, parts (b-d)
of the same figure demonstrate the flexibility of our user interface combined with
the graph cut segmentation. Our method provides a very simple and intuitive
way to adjust the segmentation to the user liking. For example, in (a) the object
segment covers only a blood pool. If the user wants to outline the epicardium,
as shown in (b), it is enough to draw a few object seeds in the myocardium.
Alternatively, if the user wants to get an accurate measurement of the endo-
cardium as in (c), (s)he might have to add a few object seeds in the area of low
contrast in the blood pool and a few background seeds in the myocardium. Our
technique also allows the user to exclude internal parts of the object from the
segmentation. For example, if the user wants to exclude papillary muscles from a
volume measurement then (s)he can add background seeds inside these muscles
as shown in (d). It should be noted that (b-d) are obtained directly from (a) by
adding new seeds and the extra running time is negligible.

Figure 2(e) shows a segmented CT image of the liver. The original data is
512 x 512 pixels and the initial segmentation takes 1 to 2 seconds. Additional
correcting seeds are processed in 100 to 200 milliseconds. This examples high-
lights the use of directed n-links. When undirected n-links are used as in Figure
2(f), the segmentation boundary oscillates between neighboring edges that are
very close together, always choosing the best edge. When directed n-links are
used as in Figure 2(g), the boundary is forced to keep brighter pixels inside.
Thus, the segmentation boundary coincides with the physical boundary of the
organ. In general, the user can achieve any segmentation result that (s)he wants.
If the results are not satisfactory in some part of the image, the user can add new
object and background seeds providing additional clues where the segmentation
was wrong, until all problems are corrected. The exact choice of seed position-
ing is not relevant. Normally, moving object seeds within a region of “similar”
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intensity inside one object segment cannot change the optimal segmentation?.
It can also be shown that adding new object seeds inside the object segment
will not change the resulting segmentation. Both properties are equally true for
background seeds.

3.2 Multiple Objects

This section gives more general examples illustrating several important proper-
ties of our algorithm. The goal is still to segment an object from the background.
This time we assume that the image may contain several isolated objects of in-
terest. For example, an MR image may contain ten blood vessels and a doctor
may want to investigate two of them. The object seeds provide the necessary
clues on what parts of the image are interesting to the user. There are no strict
requirements on where the object seeds have to be placed as long as they are
inside the object(s) of interest. Such flexibility is justified, in part, by the ability
of the algorithm to efficiently incorporate the seeds added later on, when the
initial segmentation results are not satisfactory. The object seeds can be placed
sparingly and they do not necessarily have to be connected inside each isolated
object. Potentially, the algorithm can create as many separate object segments
as there are connected components of object seeds. Nonetheless, the isolated
seeds (or components of seeds) located not too far from each other inside the
same object are likely to be segmented out together. Figure 3(d) illustrates this
property of our technique. Figure 3(d) also shows that seeds can be placed to
achieve any desired segmentation. We segmented the left kidney as one object
by placing a single object “seed” in the middle. We segmented the callices out
in the right kidney by placing background seeds in them. The segmentation al-
gorithm automatically decides which object (or background) seeds are grouped
into one connected segment and which seeds are placed separately. Note that
this property may be also useful in N dimensions when a user does not see how
the objects of interest connect when placing the seeds.

The background seeds should provide the clues on what is not an object of
interest. In many situations the pixels on the image boundary are a good choice
for background seeds. If the objects of interest are bright, then background
seeds can be spread out in the dark parts of the image. Note that background
seeds are very useful when two similar objects touch in some area of the image
and one of them is of interest while the other is not. In this case there is a
chance that the two objects may be merged into a single segment. This can
be avoided by placing a background seed in the undesired object which would
force the segmentation to separate the two objects at their merge point. Also,
when the segmentation merges two objects of interest that should be separated,
the user can add a background seed in between to effectively separate the two
objects. This property is illustrated in Figure 3(a-c). At first, in Figure 3(c),
the segmentation process grouped the two vessels together. By adding a single

3 This statement can be made precise.
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background seed right between the two vessels, as in Figure 3(b), the user forced
the process to keep the two objects separated.

3.3 3D Volumes

One example of the general graph structure for a multi-object segmentation
in 3D is shown in Figure 1(b). The 3D segmentation has the same properties
that we discussed for 2D examples. The main difficulty in 3D is to create a
convenient interface for entering seeds. In fact, the ability to scan through a
pile of 2D slices was good enough for our purpose. The user can select a few
representative slices and enter object and background seeds in these slices. Since
all voxels are connected in a 3D graph the information on what parts of the
3D volume are of interest and what parts should be considered background will
propagate appropriately. Moreover, upon the initial segmentation the user can
scan through the segmented slices and enter correcting seeds in some of the slices
where the results are not satisfactory.

Figure 4 shows an example in cardiac MR. We took images of a slice of the
heart left ventricle at different time instances and stacked them up into a volume.
We then placed seeds in one image in the middle of the volume to indicate that
we were interested in the blood pool. The resulting segmentation was almost
perfect. We just had to add a couple of background seeds in the first and last
slice to fill a small notch in the myocardium. The system was able to also fill the
notch in the neighboring slices by propagating the new seeds. This segmentation
of 12 256x256 images was done in 5 seconds.

Figure 5 shows a segmentation that we obtained for 3D lung CT data. Each
of the lobes and trachea were segmented separately. The segments we combined
to obtain multi colored visualization.

4 Conclusions and Future Research

There are several important ideas that we are currently working on. First of all
we can incorporate additional regional information by adding finite cost t-links
to all non-seed pixels/voxels. Such t-links would connect a pixel to both the
object and the background terminals. The costs can reflect how well the pixel’s
intensity fits into available models of object and background, correspondingly.
For example, such models can be represented by intensity histograms of seeded
regions. These finite cost t-links are similar to what is used in [2]. Also, we
can use approximation multi-way graph cut algorithms [2] to obtain multi-label
segmentation. Such segmentation would be able to generate multi colored seg-
mentation similar to what we show in Figure 5 without the need to segment each
component independently.

We are also interested to try our segmentation technique on 4D data. To
decrease the execution time and increase the memory efficiency of our software,
especially for large 3D volumes and 4D datasets, we are considering representing
the data using a quad-tree to group very similar pixels and associate groups to
single nodes in the graph.
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Fig. 2. Single object segmentation. (a-d): Cardiac MRI. (e-g): Liver CT. Undirected
(f) and directed (g) n-links.

Fig. 3. Segmentation of multiple objects. (a-c): Cardiac MRI. (d): Kidney CE-MR
angiography.

()

Fig. 5. Segmentation of the right lung in CT. (a): representative 2D slice of original 3D

data. (b): segmentation results on the slice in (a). (¢c-d) 3D visualization of segmentation
results.



