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Abstract

Inference in high-order graphical models has become important in recent years.
Several approaches are based, for example, on generalized message-passing, or
on transformation to a pairwise model with extra ‘auxiliary’ variables. We focus
on a special case where a much more efficient transformation is possible. Instead
of adding variables, we transform the original problem into a comparatively small
instance of submodular vertex-cover. These vertex-cover instances can then be
attacked by existing algorithms (e.g. belief propagation, QPBO), where they often
run 4–15 times faster and find better solutions than when applied to the original
problem. We evaluate our approach on synthetic data, then we show applications
within a fast hierarchical clustering and model-fitting framework.

1 Introduction

MAP inference on graphical models is a central problem in machine learning, pattern recognition,
and computer vision. Several algorithms have emerged as practical tools for inference, especially
for graphs containing only unary and pairwise factors. Prominent examples include belief propaga-
tion [30], more advanced message passing methods like TRW-S [21] or MPLP [33], combinatorial
methods like α-expansion [6] (for ‘metric’ factors) and QPBO [32] (mainly for binary problems).
In terms of optimization, these algorithms are designed to minimize objective functions (energies)
containing unary and pairwise terms.

Many inference problems must be modeled using high-order terms, not just pairwise, and such
problems are increasingly important for many applications. Recent developments in high-order in-
ference include, for example, high-arity CRF potentials [19, 38, 25, 31], cardinality-based potentials
[13, 34], global potentials controlling the appearance of labels [24, 26, 7], learning with high-order
loss functions [35], among many others.

One standard approach to high-order inference is to transform the problem to the pairwise case and
then simply apply one of the aforementioned ‘pairwise’ algorithms. These transformations add many
‘auxiliary’ variables to the problem but, if the high-order terms are sparse in the sense suggested
by Rother et al. [31], this can still be a very efficient approach. There can be several equivalent
high-order-to-pairwise transformations, and this choice affects the difficulty of the resulting pair-
wise inference problem. Choosing the ‘easiest’ transformation is not trivial and has been explicitly
studied, for example, by Gallagher et al. [11].

Our work is about fast energy minimization (MAP inference) for particularly sparse, high-order “pat-
tern potentials” used in [25, 31, 29]: each energy term prefers a specific (but arbitrary) assignment
to its subset of variables. Instead of directly transforming the high-order problem to pairwise, we
transform the entire problem to a comparatively small instance of submodular vertex-cover (SVC).
The vertex-cover implicitly provides a solution to the original high-order problem. The SVC in-
stance can itself be converted to pairwise, and standard inference techniques run much faster and are
often more effective on this compact representation.



In Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, 2012 p.2

We also show that our ‘sparse’ high-order energies naturally appear when trying to solve hierarchi-
cal clustering problems using the algorithmic approach called fusion moves [27], also conceptually
known as optimized crossover [1]. Fusion is a powerful very large-scale neighborhood search tech-
nique [3] that in some sense generalizes α-expansion. The fusion approach is not standard for the
kind of clustering objective we will consider, but we believe it is an interesting optimization strategy.

The remainder of the paper is organized as follows. Section 2 introduces the class of high-order en-
ergies we consider, then derives the transformation to SVC and the subsequent decoding. Section 3
contains experiments that suggest significant speedups, and discusses possible applications.

2 Sparse High-Order Energies Reducible to SVC

In what follows we use x to denote a vector of binary variables, xP to denote product
∏

i∈P xi, and
xQ to denote

∏
i∈Q xi. It will be convenient to adopt the convention that x{} = 1 and x{} = 1. We

always use i to denote a variable index from I, and j to denote a clique index from V .

It is well-known that any pseudo-boolean function (binary energy) can be written in the form

F (x) =
∑
i∈I

aixi −
∑
j∈V

bjxPjxQj (1)

where each clique j has coefficient −bj with bj ≥ 0, and is defined over variables in sets Pj , Qj ⊆ I.
Our approach will be of practical interest only when, roughly speaking, |V| ≪ |I|.
For example, if x = (x1, . . . , x7) then a clique j with Pj = {2, 3} andQj = {4, 5, 6} will explicitly
reward binary configuration (· , 1, 1, 0, 0, 0, ·) by the amount bj (depicted as b1 in Figure 1). If there
are several overlapping (and conflicting) cliques, then the minimization problem can be difficult.

A standard way to minimize F (x) would be to substitute each −bjxPjxQj term with a collection
of equivalent pairwise terms. In our experiments, we used the substitution −xPjxQj = −1 +
miny∈{0,1} y +

∑
i∈Pj

xiy +
∑

i∈Qj
xiy where y is an auxiliary variable. This is like the Type-II

transformation in [31], and we found that it worked better than Type-I for our experiments. However,
we aim to minimize F (x) in a novel way, so first we review the submodular vertex-cover problem.

2.1 Review of Submodular Vertex-Cover

The classic minimum-weighted vertex-cover (VC) problem can be stated as a 0-1 integer program
where variable uj = 1 if and only if vertex j is included in the cover.

(VC) minimize
∑

j∈V wjuj (2)

subject to uj + uj′ ≥ 1 ∀{j, j′} ∈ E (3)
uj ∈ {0, 1}.

Without loss of generality one can assume wj > 0 and j ̸= j′ for all {j, j′} ∈ E . If the graph
(V, E) is bipartite, then we call the specialized problem VC-B and it can be solved very efficiently
by specialized bipartite maximum flow algorithms such as [2].

A function f(x) is called submodular if f(x∧y)+f(x∨y) ≤ f(x)+f(y) for all x,y ∈ {0, 1}V
where (x ∧ y)j = xjyj and (x ∨ y)j = 1 − xjyj . A submodular function can be minimized in
strongly polynomial time by combinatorial methods [17], but becomes NP-hard when subject to
arbitrary covering constraints like (3).

The submodular vertex-cover (SVC) problem generalizes VC by replacing the linear (modular)
objective (2) with an arbitrary submodular objective,

(SVC) minimize f(u) (4)
subject to uj + uj′ ≥ 1 ∀{j, j′} ∈ E

uj ∈ {0, 1}.
Iwata & Nagano [18] recently showed that when f(·) ≥ 0 a 2-approximation can be found in
polynomial time and that this is the best constant-ratio bound achievable. It turns out that a half-
integral relaxation uj ∈ {0, 12 , 1} (call this problem SVC-H), followed by upward rounding, gives
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a 2-approximation much like for standard VC. They also show how to transform any SVC-H
instance into a bipartite instance of SVC (see below); this extends a classic result by Nemhauser &
Trotter [28], allowing specialized combinatorial algorithms like [17] to solve the relaxation.

In the bipartite submodular vertex-cover (SVC-B) problem, the graph nodes V can be partitioned
into sets J ,K so the binary variables are u ∈ {0, 1}J,v ∈ {0, 1}K and we solve

(SVC-B) minimize f(u) + g(v) (5)
subject to uj + vk ≥ 1 ∀{j, k} ∈ E

uj , vk ∈ {0, 1} ∀j ∈ J , k ∈ K
where both f(·) and g(·) are submodular functions. This SVC-B formulation is a trivial extension
of the construction in [18] (they assume g = f ), and their proof of tractability extends easily to (5).

2.2 Solving Bipartite SVC with Min-Cut

It will be useful to note that if f and g above can be written in a special manner, SVC-B can
be solved by fast s-t minimum cut instead of by [17, 15]. Suppose we have an SVC-B instance
(J ,K, E , f, g) where we can write submodular f and g as

f(u) =
∑
S∈S0

wSuS , and g(v) =
∑
S∈S1

wSvS . (6)

Here S0 and S1 are collections of subsets of J and K respectively, and typescript uS denotes
product

∏
j∈S uj throughout (as distinct from typescript u, which denotes a vector).

Proposition 1. If wS ≤ 0 for all |S| ≥ 2 in (6), then SVC-B reduces to s-t minimum cut.

Proof. We can define an equivalent problem over variables uj and zk = vk. With this substitution,
the covering constraints become uj ≥ zk. Since “g(v) submodular in v” implies “g(1−v) submod-
ular in v,” letting ḡ(z) = g(z) = g(v) means ḡ(z) is submodular as a function of z. Minimizing
f(u)+ ḡ(z) subject to uj ≥ zk is equivalent to our original problem. Since uj ≥ zk can be enforced
by large (submodular) penalty on assignment ujzk, SVC-B is equivalent to

minimize f(u) + ḡ(z) +
∑

(j,k)∈E

ηujzk where η = ∞. (7)

When f and g take the form (6), we have ḡ(z) =
∑

S∈S1 wSzS where zS denotes product
∏

k∈S zk.

If wS ≤ 0 for all |S| ≥ 2, we can build an s-t minimum cut graph corresponding to (7) by directly
applying the constructions in [23, 10]. We can do this because each term has coefficient wS ≤ 0
when written as u1 · · ·u|S| or z1 · · · z|S|, i.e. either all complemented or all uncomplemented.

2.3 Transforming F (x) to SVC

To get a sense for how our transformation works, see Figure 1. The transformation is reminiscent of
the binary dual of a Constraint Satisfaction Problem (CSP) [37]. The vertex-cover construction of
[4] is actually a special linear (modular) case of our transformation (details in Proposition 2).

Figure 1: Left: factor graph F (x) =
∑7

i=1 aixi−b1x2x3x4x5x6−b2x1x2x3x4x5−b3x3x4x5x6x7.
A small white square indicates ai > 0, a black square ai < 0. A hollow edge connecting xi to factor
j indicates i ∈ Pj , and a filled-in edge indicates i ∈ Qj . Right: factor graph of our corresponding
SVC instance. High-order factors of the original problem, shown with gray squares on the left, are
transformed into variables of SVC problem. Covering constraints are shown as dashed lines. Two
pairwise factors are formed with coefficients w{1,3} = −a3 and w{1,2} = a4 + a5, both ≤ 0.
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Theorem 1. For any F (x) there exists an instance of SVC such that an optimum x∗ ∈ {0, 1}I for
F can be computed from an optimal vertex-cover u∗ ∈ {0, 1}V .

Proof. First we give the construction for SVC instance (V, E , f). Introduce auxiliary binary vari-
ables u ∈ {0, 1}V where uj = xPjxQj . Because each bj ≥ 0, minimizing F (x) is equivalent to the
0-1 integer program with non-linear constraints

minimize F (x,u)

subject to uj ≤ xPjxQj ∀j ∈ V. (8)
Inequality (8) is sufficient if bj ≥ 0 because, for any fixed x, equality uj = xPjxQj holds for some
u that minimizes F (x,u).

We try to formulate a minimization problem solely over u. As a consequence of (8) we have uj =
0 ⇒ xPj = 1,xQj = 0. (We use typescript xS to denote vector (xi)i∈S , whereas xS denotes a
product—a scalar value.) Notice that, when some Pj and Qj′ overlap, not all u ∈ {0, 1}V can be
feasible with respect to assignments x ∈ {0, 1}I . For each i ∈ I, let us collect the cliques that i
participates in: define sets Ji,Ki ⊆ V where Ji = { j | i ∈ Pj} and Ki = { j | i ∈ Qj}. We show
that u can be feasible if and only if uJi + uKi

≥ 1 for all i ∈ I, where uS denotes a product. In
other words, u can be feasible if and only if, for each i,

∃uj = 0, j ∈ Ji =⇒ uk = 1 ∀j ∈ Ki

∃uk = 0, k ∈ Ki =⇒ uj = 1 ∀j ∈ Ji.
(9)

(⇒) If uj ≤ xPjxQj for all j ∈ V , then having uJi + uKi ≥ 1 is necessary: if both uJi = 0 and
uKi = 0 for any i it would mean there exists j ∈ Ji and k ∈ Ki for which xPj = 1 and xQk

= 0,
contradicting any unique assignment to xi.
(⇐) If uJi+ uKi ≥ 1 for all i ∈ I, then we can always choose some x ∈ {0, 1}I for which every
uj ≤ xPj

xQj
. It will be convenient to choose a minimum cost assignment for each xi, subject to the

constraints uJi = 0 ⇒ xi = 1 and uKi = 0 ⇒ xi = 0. If both uJi = uKi = 1 then xi could be
either 0 or 1 so choose the best, giving

x(u)i =

{
0 if uKi = 0
1 if uJi = 0

[ai < 0] otherwise.
(10)

The assignment x(u) is feasible with respect to (8) because for any uj = 1 we have x(u)Pj = 1
and x(u)Qj = 0.

We have completed the proof that u can be feasible if and only if uJi + uKi ≥ 1. To express
minimization of F solely in terms of u, first write (10) in equivalent form

x(u)i =

{
uKi if ai < 0

1− uJi otherwise. (11)

Again, this definition of x(u) minimizes F (x,u) over all x satisfying inequality (8). Use (11) to
write new SVC objective f(u) = F (x(u),u), which becomes

f(u) =
∑

i : ai>0

ai(1− uJi) +
∑

i : ai<0

aiuKi −
∑
j∈V

bj(1− uj)

=
∑

i : ai>0

−aiuJi +
∑

i : ai<0

aiuKi +
∑
j∈V

bjuj + const. (12)

To collect coefficients in the first two summands of (12), we must group them by each unique clique
that appears. We define set S = {S ⊆ V | (∃Ji = S) ∨ (∃Ki = S)} and write

f(u) =
∑
S∈S

wSuS + const (13)

where wS =
∑

i : ai>0,
Ji=S

−ai +
∑

i : ai<0,
Ki=S

ai

(
+ bj if S = {j}

)
. (14)

Since the high-order terms uS in (13) have non-positive coefficients wS ≤ 0, then f(u) is submod-
ular [5]. Also note that for each i at most one of Ji or Ki contributes to the sum, so there are at most
|S| ≤ |I| unique terms uS with wS ̸= 0. If |S|, |V| ≪ |I| then our SVC instance will be small.

Finally, to ensure (9) holds we add a covering constraint uj + uk ≥ 1 whenever there exists i such
that j ∈ Ji, k ∈ Ki. For this SVC instance, an optimal covering u minimizes F (x(u),u).
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The construction in Theorem 1 suggests the entire minimization procedure below.

MINIMIZE-BY-SVC(F ) where F is a pseudo-boolean function in the form of (1)

1 w{j} := bj ∀j ∈ V
2 for i ∈ I do
3 if ai > 0 then wJi := wJi − ai (distribute ai to high-order SVC coefficients)
4 else if ai < 0 then wKi := wKi + ai (where index sets Ji and Ki defined in Theorem 1)
5 E := E ∪ {{j, k}} ∀j ∈ Ji, k ∈ Ki (add covering constraints to enforce uJi + uKi ≥ 1)
6 let f(u) =

∑
S∈S wSuS (define SVC objective over clique indices V)

7 u∗ := SOLVE-SVC(V, E , f) (solve with BP, QPBO, Iwata, etc.)
8 return x(u∗) (decode the covering as in (10))

One reviewer suggested an extension that scales better with the number of overlapping cliques. The
idea is to formulate SVC over the elements of S rather than V . Specifically, let y ∈ {0, 1}S and use
submodular objective f(y) =

∑
S∈S wSyS +

∑
j∈S(bj + 1)ySy{j}, where the inner sum ensures

yS =
∏

j∈S y{j} at a local minimum because w{j} ≤ bj . For each unique pair {Ji,Ki}, add a
covering constraint yJi

+yKi
≥ 1 (instead ofO(|Ji|·|Ki|) constraints). An optimal covering y∗ of S

then gives an optimal covering of V by assigning uj = y∗{j}. Here we use the original construction,
and still report significant speedups. See [8] for discussion of efficient implementation, and an
alternate proof of Theorem 1 based on LP relaxation.

2.4 Special Cases of Note

Proposition 2. If {Pj}j∈V are disjoint and, separately, {Qj}j∈V are disjoint (equivalently each
|Ji|, |Ki| ≤ 1), then the SVC instance in Theorem 1 reduces to standard VC.

Proof. Each S ∈ S in objective (13) must be S = {j} for some j ∈ V . The objective then becomes
f(u) =

∑
j∈V w{j}uj + const, a form of standard VC.

Proposition 2 shows that the main result of [4] is a special case of our Theorem 1 when Ji = {j}
and Ki = {k} with j, k determined by two labelings being ‘fused’. In Section 3, this generalization
of [4] will allow us to apply a similar fusion-based algorithm to hierarchical clustering problems.

Proposition 3. If each particular j ∈ V has either Pj = {} or Qj = {}, then the construction in
Theorem 1 is an instance of SVC-B. Moreover, it is reducible to s-t minimum cut.

Proof. In this case Ji is disjoint with Ki′ for any i, i′ ∈ I, so sets J = {j : |Pj | ≥ 1} and
K = {j : |Qj | ≥ 1} are disjoint. Since E contains pairs (j, k) with j ∈ J and k ∈ K, graph (V, E)
is bipartite. By the disjointness of any Ji and Ki′ , the unique clique sets S can be partitioned into
S0 = {S ⊆ J | ∃Ji = S} and S1 = {S ⊆ K | ∃Ki = S} so that (13) can be written as in
Proposition 1 and thereby reduced to s-t minimum cut.

Corollary 1. If sets {Pj}j∈V and {Qj}j∈V satisfy the conditions of propositions 2 and 3, then
minimizing F (x) reduces to an instance of VC-B and can be solved by bipartite maximum flow.

We should note that even though SVC has a 2-approximation algorithm [18], this does not give us
a 2-approximation for minimizing F in general. Even if F (x) ≥ 0 for all x, it does not imply
f(u) ≥ 0 for configurations of u that violate the covering constraints, as would be required.

3 Applications

Even though any pseudo-boolean function can be expressed in form (1), many interesting problems
would require an exponential number of terms to be expressed in that form. Only certain specific
applications will naturally have |V| ≪ |I|, so this is the main limitation of our approach. There may
be applications in high-order segmentation. For example, when Pn-Potts potentials [19] are incor-
porated into α-expansion, the resulting expansion step contains high-order terms that are compact
in this form; in the absence of pairwise CRF terms, Proposition 3 would apply.

The α-expansion algorithm has also been extended to optimize the facility location objective [7]
commonly used for clustering (e.g. [24]). The resulting high-order terms inside the expansion step
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Figure 2: Effectiveness of each algorithm as strength of high-order coefficients is increased by factor
of λ ∈ {1..16}. For a fixed λ, the final energy of each algorithm was normalized between 0.0 (best
lower bound) and 1.0 (baseline ICM energy); the true energy gap between lower bound and baseline
is indicated at top, e.g. for λ = 1 the “lb+5” means ICM was typically within 5 of the lower bound.

also take the form (1) (in fact, Corollary 1 applies here); with no need to build the ‘full’ high-order
graph, this would allow α-expansion to work as a fast alternative to the classic greedy algorithm
for facility location, very similar to the fusion-based algorithm in [4]. However, in Section 3.2 we
show that our generalized transformation allows for a novel way to optimize a hierarchical facility
location objective. We will use a recent geometric image parsing model [36] as a specific example.
First, Section 3.1 compares a number of methods on synthetic instances of energy (1).

3.1 Results on Synthetic Instances

Each instance is a function F (x) where x represents a 100 × 100 grid of binary variables with
random unary coefficients ai ∈ [−10, 10]. Each instance also has |J | = 50 high-order cliques with
bj ∈ [250λ, 500λ] (we will vary λ), where variable sets Pj and Qj each cover a random nj ×nj and
mj ×mj region respectively (here the region size nj ,mj ∈ {10, . . . , 15} is chosen randomly). If
Pj and Qj are not disjoint, then either Pj := Pj \Qj or Qj := Qj \Pj , as determined by a coin flip.

We tested the following algorithms: BP [30], TRW-S [21], MPLP [33], QPBO [14], and extensions
QPBO-P and QPBO-I [32]. For BP we actually used the implementation provided by [21] which is
very fast but, we should note, does not support message-damping; convergence of BP may be more
reliable if this were supported. Algorithms were configured as follows: BP for 25 iterations (more
did not help); TRW-S for 800 iterations (epsilon 1); MPLP for 2000 initial iterations + 20 clusters
added + 100 iterations per tightening; QPBO-I with 5 random improve steps. We ran MPLP for a
particularly long time to ensure it had ample time to tighten and converge; indeed, it always yielded
the best lower bound. We also tested MINIMIZE-BY-SVC by applying each of these algorithms to
solve the resulting SVC problem, and in this case also tried the Iwata-Nagano construction [18].

To transform high-order potentials to quadratic, we report results using Type-II binary reduction [31]
because for TRW-S/MPLP it dominated the Type-I reduction in our experiments, and for BP and the
others it made no difference. This runs counter to the conventional used of “number of supermodular
terms” as an estimate of difficulty: the Type-I reduction would generate one supermodular edge per
high-order term, whereas Type-II generates |Pj | supermodular edges for each term (

∑
i∈Pj

xiy).

One minor detail is how to evaluate the ‘partial’ labelings returned by QPBO and QPBO-P. In the
case of minimizing F directly, we simply assigned such variables xi = [ai < 0]. In the case of
MINIMIZE-BY-SVC we included all unlabeled nodes in the cover, which means a variable xi with
uJi and uKi

all unlabeled will similarly be assigned xi = [ai < 0].

Figure 2 shows the relative performance of each algorithm, on average. When λ = 1 the high-order
coefficients are relatively weak compared to the unary terms, so even ICM succeeds at finding a
near-optimal energy. For larger λ the high-order terms become more important, and we make a
number of observations:

– ICM, BP, TRW-S, MPLP all perform much better when applied to the SVC problem.
– QPBO-based methods do not perform better when applied to the SVC problem.
– QPBO-I consistently gives good results; BP also gives good results if applied to SVC.
– The Iwata-Nagano construction is effectively the same as QBPO applied to SVC.
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We also observed that the TRW-S lower bound was the same with or without transformation to
SVC, but convergence took much fewer iterations when applied to SVC. In principle, TRW on
binary problems solves the same LP relaxation as QPBO [22]. The TRW-S code finds much better
solutions because it uses the final messages as hints to decode a good solution, unlike for QPBO.

Table 1 gives typical running times for each of the cases in Figure 2 on a 2.66 GHz Intel Core2
processor. Code was written in C++, but the SVC transformation was not optimized at all. Still,
SVC-QBPOI is 20 times faster than QPBOI while giving similar energies on average. The overall
results suggest that SVC-BP or SVC-QPBOI are the fastest ways to find a low-energy solution (bold
in Table 1) on problems containing many conflicting high-order terms of the form (1). Running
times were relatively consistent for all λ ≥ 2.

Table 1: Typical running times of each algorithm. First row uses Type-II binary reduction on F ,
then directly runs each algorithm. Second row first transforms to SVC, does Type-II reduction, runs
the algorithm, and decodes the result; times shown include all these steps.

BP TRW-S MPLP QPBO QPBO-P QPBO-I Iwata
directly minimize F 22ms 670ms 25min 30ms 25sec 140ms N/A

MINIMIZE-BY-SVC(F ) 5.2ms 19ms 80sec 5.4ms 99ms 7.2ms 5ms

3.2 Application: Hierarchical Model-Estimation / Clustering

In clustering and multi-model estimation, it is quite common to either explicitly constrain the num-
ber of clusters, or—more relevant to our work—to penalize the number of clusters in a solution.
Penalizing the number of clusters is a kind of complexity penalty on the solution. Recent examples
include [24, 7, 26], but the basic idea has been used in many contexts over a long period. A classic
operations research problem with the same fundamental components is facility location: the clients
(data points) must be assigned to a nearby facility (cluster) but each facility costs money to open.
This can be thought of as a labeling problem, where each data point is a variable, and there is a label
for each cluster.

For hard optimization problems there is a particular algorithmic approach called fusion [27] or op-
timized crossover [1]. The basic idea is two take two candidate solutions (e.g. two attempts at clus-
tering), and to ‘fuse’ the best parts of each solution, effectively stitching them together. To see this
more concretely, imagine a labeling problem where we wish to minimize E(l) where l = (li)i∈I
is a vector of label assignments. If l0 is the first candidate labeling, and l1 is the second candidate
labeling, a fusion operation seeks a binary string x∗ such that the crossover labeling l(x) = (lxi

i )i∈I
minimizes E(l(x)). In other words, x∗ identifies the best possible ‘stitching’ of the two candidate
solutions with respect to the energy.

In [4] we derived a fusion operation based on the greedy formulation of facility location, and found
that the subproblem reduced to minimum-weighted vertex-cover. We will now show that the fusion
operation for hierarchical facility location objectives requires minimizing an energy of the form (1),
which we have already shown can be transformed to a submodular vertex-cover problem. Givoni
et al. [12] recently proposed a message-passing scheme for hierarchical facility location, with exper-
iments on synthetic and HIV strain data. We focus on more a computer vision-centric application:
detecting a hierarchy of lines and vanishing points in images using the geometric image parsing
objective proposed by Tretyak et al. [36].

The hierarchical energy proposed by [36] contains five ‘layers’: edges, line segments, lines, vanish-
ing points, and horizon. Each layer provides evidence for subsequent (higher) layers, and at each
level their is a complexity cost that regulates how much evidence is needed to detect a line, to detect
a vanishing point, etc. For simplicity we only model edges, lines, and vanishing points, but our
fusion-based framework easily extends to the full model. The purpose of our experiments are, first
and foremost, to demonstrate that MINIMIZE-BY-SVC speeds up inference and, secondly, to sug-
gest that a hierarchical clustering framework based on fusion operations (similar to non-hierarchical
[4]) is an interesting and potentially worthwhile alternative to the greedy and local optimization used
in state-of-the-art methods like [36].
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Let {yi}i∈I be a set of oriented edges yi = (xi, yi, ψi) where (x, y) is position in the image and ψ
is an angle; these bottom-level features are generated by a Canny edge detector. Let L be a set of
candidate lines, and let V be a set of candidate vanishing points. These sets are built by randomly
sampling: one oriented edge to generate each candidate line, and pairs of lines to generate each
candidate vanishing point. Each line j ∈ L is associated with one vanishing point kj ∈ V . (If a line
passes close to multiple vanishing points, a copy of the line is made for each.) We seek a labeling l
where li ∈ L ∪ ⊘ identifies the line (and vanishing point) that edge i belongs to, or assigns outlier
label ⊘. Let Di(j) = distj(xi, yi) + distj(ψi) denote the spatial distance and angular deviation of
edge yi to line j, and let the outlier cost be Di(⊘) = const. Similarly, let Dj = distj(kj) be the
distance of line j and its associated vanishing point projected onto the Gaussian sphere (see [36]).
Finally let Cl and Cv denote positive constants that penalize the detection of a line and a vanishing
point respectively. The hierarchical energy we minimize is

E(l) =
∑
i∈I

Di(li) +
∑
j∈L

(Cl +Dj)·[∃li = j] +
∑
k∈V

Cv ·[∃kli = k]. (15)

This energy penalizes the number of unique lines, and the number of unique vanishing points that
labeling l depends on. Given two candidate labelings l0, l1, writing the fusion energy for (15) gives

E(l(x)) =
∑
i∈I

D0
i +(D1

i −D0
i )xi +

∑
j∈L

(Cl +Dj)·(1−xPjxQj ) +
∑
k∈V

Cv ·(1−xPk
xQk

) (16)

where Pj = { i | l0i = j }, Qj = { i | l1i = j }, and Pk = { i | kl0i = k }, Qk = { i | kl1i = k }.
Notice that sets {Pj} are disjoint with each other, but each Pj is nested in subset Pkj , so overall
Proposition 2 does not apply, and so neither does the algorithm in [4].

For each image we used 10,000 edges, generated 8,000 candidate lines and 150 candidate vanishing
points. We then generated 4 candidate labelings, each by allowing vanishing points to be detected
in randomized order, and their associated lines to be detected in greedy order, and then we fused
the labelings together by minimizing (16). Overall inference with QPBOI took 2–6 seconds per
image, whereas SVC-QPBOI took 0.5-0.9 seconds per image with relative speedup of 4–6 times.
The simplified model is enough to show that hierarchical clustering can be done in this new and
potentially powerful way. As argued in [27], fusion is a robust approach because it combines the
strengths—quite literally—of all methods used to generate candidates.

Figure 3: (Best seen in color.) Edge features color-coded by their detected vanishing point. Not
shown are the detected lines that make up the intermediate layer of inference (similar to [36]).
Images taken from York [9] and Eurasia [36] datasets.
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