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Convexity Shape Prior for Binary Segmentation
Lena Gorelick, Olga Veksler, Yuri Boykov, and Claudia Nieuwenhuis

Abstract—Convexity is a known important cue in human
vision. We propose shape convexity as a new high-order regular-
ization constraint for binary image segmentation. In the context
of discrete optimization, object convexity is represented as a sum
of 3-clique potentials penalizing any 1-0-1 configuration on all
straight lines. We show that these non-submodular potentials can
be efficiently optimized using an iterative trust region approach.
At each iteration the energy is linearly approximated and globally
optimized within a small trust region around the current solution.
While the quadratic number of all 3-cliques is prohibitively high,
we design a dynamic programming technique for evaluating and
approximating these cliques in linear time. We also derive a
second order approximation model that is more accurate but
computationally intensive.

We discuss limitations of our local optimization and propose
gradual non-submodularization scheme that alleviates some limi-
tations. Our experiments demonstrate general usefulness of the
proposed convexity shape prior on synthetic and real image
segmentation examples. Unlike standard second-order length
regularization, our convexity prior does not have shrinking bias,
and is robust to changes in scale and parameter selection.

Index Terms—Segmentation, convexity shape prior, high-order
functionals, trust region, graph cuts.

I. INTRODUCTION

Length-based regularization is commonly used for ill-posed
segmentation problems, in part because efficient global opti-
mization algorithms are well-known for both discrete and con-
tinuous formulations, e.g. [3], [23]. Nevertheless, the shrinking
bias and the sensitivity to the weight of the length term in
the energy are widely recognized as limitations of this form
of regularization. These problems motivate active research
on optimization of higher-order regularization energies, e.g.
curvature [24], [6], [22], [20] and cooperative prior [12], [13],
which can alleviate the shrinking bias and other issues.

We propose a new higher-order regularization model: con-
vexity shape constraint, see Fig.1. Convexity was identified as
an important cue in human vision [18], [19]. Many natural
images have convex or nearly convex objects. Convex objects
are also common in medical images. Yet, to the best of our
knowledge, we are the first to introduce a convexity shape
prior into discrete segmentation energy.

We develop an energy-based formulation for convexity prior
in discrete optimization framework and propose an efficient
optimization algorithm for the corresponding non-submodular
high-order energy term. For a given segment S ⊂ Ω, the
overall segmentation energy E(S) can combine our convexity
prior Econvexity(S) with user-defined hard-constraints, linear
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appearance models[4], boundary length [3], color separation
[26], or any others standard submodular terms Esub(S)

E(S) = Econvexity(S) + Esub(S). (1)

Convexity of segment S is expressed as a penalty for all
ordered triplet configurations 1-0-1 along any straight line,
see Fig.2. Similar straight 3-cliques also appear in curvature
modeling [20], but they also need 0-1-0 configurations to
penalize negative curvature. Moreover, they use only local
triplets to evaluate curvature. In contrast, convexity is not a
local property of the segment boundary. Therefore, we have
to penalize 1-0-1 configurations on straight intervals of any
length. Consequently, our convexity energy model has a much
larger number of cliques. We propose an efficient dynamic
programming technique to evaluate and approximate these
cliques in the context of trust region optimization [10].

Related Work: Many related shape priors were introduced
in the past. Common length-based regularizer [3] penalizes
segment perimeter favoring smooth solutions that are closer to
circles and, therefore, more convex. However, as shown in our
experiments, this prior needs to be carefully balanced with the
appearance term as it has a strong shrinking bias. Connectivity
regularizer [28], [21] does not have shrinking bias but might
suffer from connecting thin structure artifacts.

Another related regularizer is the star shape prior [27],
[11], which imposes convexity constraints only along the lines
passing through a reference point given by the user: these lines
are allowed to enter and exit the object only once. In contrast
to our convexity prior, the star shape prior allows for non-
convex objects, e.g. a star.

There are also part-based shape priors [29], [17], [7]. A
shape is partitioned into several parts and each part imposes
certain constraints on the direction of the boundary with the
background. This approach can model some simple convex
shapes, e.g. a rectangle, but it can not represent a general
convexity prior.

The most related work to ours is [25], which models
the object as an n-sided convex polygon. It is a part-based
approach that uses one foreground and n background labels.
For an accurate segmentation of an arbitrary convex object,
e.g. a circle, a finer discretization (i.e. more background parts)
is required, significantly increasing runtime. The larger the
object, the worse is the problem. In contrast, we can obtain
an arbitrary convex object for any choice of orientation dis-
cretization. Moreover, [25] relies on continuous optimization
and is not efficient without GPU. Additional related work on
optimization is discussed in Sec. IV-C.

Contributions: We introduce a new discrete convexity
shape regularizer. When enforced as a hard constraint, it
is a parameter-free convexity shape prior. In practice, we
enforce convexity as a soft constraint using a finite penalty
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Fig. 1. Segmentation with convexity shape prior: (a) input image, (b) user scribbles, (c) segmentation with contrast sensitive length regularization. We
optimized the weight of length with respect to ground truth. (d) segmentation with convexity shape prior.

ω. However, our experiments show that there is almost no
variation in segmentation results for different values of the
convexity weight ω, once the value is high enough. Our
method is also robust to changes in scale, see Sec. IV.

We develop an optimization algorithm based on trust region
framework and show how to use dynamic programming to
significantly improve efficiency. In the context of trust region,
we derive and compare both linear and quadratic approxima-
tions of our energy. While quadratic approximation is more
accurate, it is computationally more expensive. Nonetheless,
it could potentially be useful for approximating other high-
order energies.

We discuss alternative convexity models such as central
clique model and local convexity model and alternative op-
timization schemes such as gradual non-submodularization.
We also experimentally validate the advantage of our covexity
vs. the length regularizer for segmentation.

Finally, we collected a new dataset of natural images with
ground truth convex segmentations, available for download.

The paper is organized as follows. Sec. II formulates
convexity energy and Sec. II-A explains its efficient evalu-
ation. Sec. III introduces trust region optimization framework.
We derive linear approximation of our energy in Sec. III-A
and show how to compute it efficiently using dynamic pro-
gramming in Sec. III-B. In Sec. III-C we discuss a more
accurate quadratic approximation of our energy. Sec. IV-A
demonstrates the usefulness of convexity shape prior and
compares it to the standard length regularization. In Sec. IV-B
we discuss alternative central and local convexity models and
in Sec. IV-C we discuss alternative optimization schemes.
Finally, in Sec.IV-D we point out some limitations of our local
optimization. We evaluate two possible solutions: gradual non-
submodularization in Sec. IV-D2 and quadratic approximation
in Sec. IV-D3 to alleviate some of the limitations.

II. ENERGY

Denote by Ω the set of all image pixels and let S ⊂ Ω
be a segment. Let x be a vector of binary indicator variables
xs ∈ {0, 1}, p ∈ Ω such that S = {p | xs = 1}. Due to one-to-
one correspondence, we will use either x or S interchangeably.

In this paper we focus on convexity shape prior and propose
a novel formulation to incorporate this prior into segmentation
energy. In continuous case, segment S is convex if and only
if for any p, r ∈ S there is no q on a line between them s.t.
q /∈ S. In discrete case, we approximate convexity constrains
as follows.

),( iii vud
p0

p1
p2

p3
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Fig. 2. Left: Example of discretized orientations given by a 5×5 stencil. One
orientation di is highlighted. Middle: Set Li of all discrete lines on image
grid that are parallel to di. Right: Example of a triple clique (ps, pt, pv) that
violates convexity constraint.

Let i ∈ {1, . . . ,m} enumerate discrete line orientations, see
Fig. 2 (left). Let p ∈ Ω be a pixel, and let lip be a discrete line
passing through p in orientation di. That is,

lip = {pt| pt = p+ t · di, t ∈ Z, pt ∈ Ω}. (2)

We define Li = {lip ⊂ Ω|p ∈ Ω} as the set of all discrete
lines lip of given orientation di. Fig. 2 (middle) illustrates set
Li for one particular orientation di and highlights one lip. To
avoid double indexing throughout the paper we use xt instead
of xpt to denote the binary variable for pixel pt on a line1.

One way to represent discrete convexity constraint is based
on potential φ : {0, 1}3 → R defined for all triplets of ordered
pixels (ps, pt, pv), s < t < v along any discrete line l ∈

⋃
Li

φ(xs, xt, xv) =

{
∞ if (xs, xt, xv) = (1, 0, 1)

0 otherwise.

In practice we use some finite penalty ω redefining potential
φ algebraically as

φ(xs, xt, xv) = ω · xs(1− xt)xv. (3)

The convexity energy Econvexity(x) integrates this triple
clique potential over all orientations, all lines and all triplets:

Econvexity(x) =
∑

l∈
⋃

Li

∑
(ps,pt,pv)∈l

s<t<v

φ(xs, xs, xv). (4)

As discussed below, 3rd-order energy (4) is hard to optimize
for two reasons: it is non-submodular and it has a prohibitively
large number of cliques.

It is easy to verify that this energy is non-submodular [8].
It is enough to show that there exist segments S, T ⊂ Ω s.t.

E(S) + E(T ) < E(S ∩ T ) + E(S ∪ T ) (5)

1Note, pixel p ∈ Ω has unique index tl on each line l passing through it.
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Consider the example below. Since both S and T are con-
vex, the left hand side in (5) is zero, while the right hand
side is infinite since the union of S and T is not convex.

S T

Therefore, our energy cannot be opti-
mized with standard methods for sub-
modular functions.

At the first glance, is seems pro-
hibitively expensive to even evaluate
our energy on reasonably sized images. For example, for a
200×300 image, with just 8 orientations, there are roughly 32
billion triple cliques. In Sec. II-A, III-B we show how to eval-
uate and approximate the Econvexity in time linear w.r.t. image
size using dynamic programming. Then, in Sec. III we show
how to optimize our energy using trust region techniques [30],
[10]. Alternative convexity models and optimization schemes
are discussed in Sec. IV-B and IV-C.

A. Energy Evaluation via Dynamic Programming

This section explains how to evaluate our convexity term
Econvexity(x) efficiently. We show how to compute the inner
summation in (4) for one given line l. The idea is to use
dynamic programming to efficiently count the number of
triplets (1, 0, 1) on a line violating convexity constraints.

Let xl denote a vector of binary indicator variables on line
l. We rewrite

Econvexity(xl) =
∑

(ps,pt,pv)∈l
s<t<v

φ(xs, xt, xv)

= ω ·
∑

s<t<v

xs · (1− xt) · xv.

Consider pixels ps, pt, pv ∈ l. We say pixel ps precedes
pixel pt on line l if s < t. Similarly, pixel pv succeeds pixel
pt if v > t. Let C−(t) be the number of pixels ps preceding
pixel pt such that xs = 1, and C+(t) be the number of pixels
pv succeeding pixel pt such that xv = 1:

C−(t) =
∑

s<t xs, C+(t) =
∑

v>t xv. (6)

To count the number of all violating configuration (1, 0, 1)
for ordered triplets on line l we first consider one fixed pixel
pt ∈ l with zero label xt = 0. Each preceding pixel with
label one and each succeeding pixel with label one form
configuration (1, 0, 1). Thus, the total combinatorial number
of ordered triplets (ps, pt, pv), s < t < v, with configuration
(1, 0, 1) is given by C+(t) ·C−(t), see Fig. 3. Summing over
all zero label pixels on line l gives

Econvexity(xl) = ω ·
∑
t

C+(t) · C−(t) · (1− xt).

Note that C−(t) = C−(t − 1) + xt−1 and C+(t) =
C+(t + 1) + xt+1. Hence each of C+(t) and C−(t) can be
computed for all pixels on a line in one pass using running
sums. For a particular orientation di, each pixel appears in one
line only. Therefore, the total number of operations needed
to compute Econvexity(x) is O(mN), where N = |Ω| is the
number of pixels in the image and m is the number of distinct
orientations.

1 1 0 1 0 1 1 0

0 1 2 2 3 3 4 5
4 3 3 2 2 1 0 0

6 6 0

lx
−C
+C

Fig. 3. Evaluation of Econvexity . The top row shows current configuration
xl of pixels on line l. The second and the third rows show the number of
pixels ps with xs = 1 before and after each pixel pt, that is, functions C−(t)
and C+(t). The last row shows the number of violated constraints for each
pt with xt = 0, resulting in total of 12 violations on the line.

III. OPTIMIZATION

This section describes our optimization algorithm for seg-
mentation energy (1) with the convexity shape prior. In terms
of indicator variables x this energy is

E(x) = Econvexity(x) + Esub(x) (7)

where Esub is any submodular term2 that can be optimized
with graph cuts, e.g. boundary length [3], color separation
[26], etc. As mentioned earlier, our term Econvexity is non-
submodular and therefore hard to optimize. An additional
difficulty is the large number of triple cliques in Econvexity(x).

For optimization, we use iterative trust region (TR) frame-
work [30], which has been shown promising for various non-
submodular energies [10], [20], [9]. In each iteration, we
construct an approximate tractable model Ẽk of the energy
E in (7) near current solution xk. The model is only accurate
within a small region around xk called “trust region”. The
approximate Ẽk is then optimized within the trust region to
obtain a candidate solution. This step is called trust region
sub-problem. The size of the trust region is adjusted in each
iteration based on the quality of the current approximation.
See [30] for a review of trust region.

Algorithm 1 summarizes our approach. Line 4 computes
unary approximate energy Ek

apprx for the non-submodular
Econvexity around xk. Line 5 combines Ek

apprx with the sub-
modular Esub. The resulting Ẽk is submodular and coincides
with the exact energy E on xk. The TR sub-problem requires
minimization of Ẽk within a small region ||x − xk|| ≤ dk
around xk. Unfortunately, minimizing Ẽk under distance
constraints is NP-hard [9]. Instead, we use a simpler formu-
lation of the TR sub-problem proposed in [9], [10] based on
unconstrained optimization of submodular Lagrangian

Lk(x) = Ẽk(x) + λk||x− xk||. (8)

Here parameter λk controls the trust region size indirectly
instead of distance dk. We use L2 distance expressed with
unary terms, see [10], [9]. Therefore Lk(x) is submodular.
Line 7 solves (8) for some fixed λk using one graph-cut.

The candidate solution x∗ is accepted whenever the original
energy decreases (line 25). The Lagrange multiplier λk is

2The submodularity of the last term in (7) is assumed for clarity. The
proposed trust region approach can approximate non-submodular terms jointly
with Econvexity .
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Algorithm 1: TRUST REGION CONVEXITY

1 x0 ←− xinit, λ0 ←− λinit, convergedFlag←− 0
2 Repeat Until convergedFlag
3 //Approximate Econvexity(x) around xk

4 Compute Ek
apprx(x) (see Sec. III-A)

5 Ẽk(x) = Ek
apprx(x) +Esub(x) // keep the submodular part

6 //Trust region sub-problem
7 x∗ ←− argminx L

k(x) (8)
8 Evaluate Econvexity(x

k), Econvexity(x
∗) (see Sec. II-A)

9 Evaluate Ek
apprx(x), E

k
apprx(x

∗) (see Sec. III-B)
10 R = E(xk)− E(x∗) // actual reduction in energy
11 P = Ẽk(xk)− Ẽk(x∗) // predicted reduction in energy
12 If P = 0 // meaning x∗ = xk and λ > λmax
13 λk ←− λmax
14 //Trust region sub-problem:
15 x∗ ←− argminx L

k(x) (8)
16 Evaluate Econvexity(x

k), Econvexity(x
∗) (see Sec. II-A)

17 Evaluate Ek
apprx(x

k), Ek
apprx(x

∗) (see Sec. III-B)
18 R = E(xk)− E(x∗) // actual reduction in energy
19 P = Ẽk(xk)− Ẽk(x∗) // predicted reduction in energy
20 //Update current solution

21 xk+1 ←−
{

x∗ if R > 0
xk otherwise

22 convergedFlag←− (R ≤ 0)
23 Else // meaning x∗ 6= xk and λ ≤ λmax
24 //Update current solution

25 xk+1 ←−
{

x∗ if R > 0
xk otherwise

26 //Adjust the trust region

27 λk+1 ←−
{
λk/α if R/P > τ2
λk · α otherwise

28 we use α = 10, τ2 = 0.25

adaptively changed (line 27), based on the quality of the
current approximation as motivated by empirical inverse pro-
portionality relation between λk and dk (see [10]). In each
iteration of the trust region, either the energy decreases or
the trust region size is reduced. When the trust region is so
small that it does not contain a single discrete solution, namely
x∗ = xk (Line 12), one more attempt is made using λmax,
where λmax = sup

{
λ|x∗ 6= xk

}
(see [10]). If there is no

reduction in energy with smallest discrete step λmax (Line 21),
we are at a local minimum [5] and we stop (Line 22).

A. Linear Approximation of Econvexity

Below we derive linear approximation Ek
apprx(x) for the

energy term Econvexity(x) in (4) around current solution xk

Ek
apprx(x) =

∑
l∈

⋃
Li

∑
(ps,pt,pv)∈l

s<t<v

φk(xs, xt, xv) (9)

where φk(xs, xt, xv) is a linear approximation of the corre-
sponding φ(xs, xt, xv) in (3) around xk, as explained below.

Property III-A.1. For any potential φ(x) : {0, 1}n → R of
n binary variables x = (x1, . . . , xn) and any subset A ⊂
{0, 1}n of n+ 1 distinct binary configurations of x, there is a
linear function LA(x) = a0 + a1x1 + a2x2 + . . .+ anxn such
that φ(x) = LA(x) for any x ∈ A.

The proof of Prop. III-A.1 is by construction. To find
linear approximation LA(x) of any potential φ(x), we need
to compute n+1 unknown coefficients of LA(x). This can be
done by solving a system of n + 1 equations φ(x) = LA(x)
for n + 1 binary configurations in some chosen A. Note that
there are 2n possible configurations of n binary variables.
Therefore, for our triple clique potential in (3), set A contains
four out of eight distinct configurations of labels (xs, xt, xv).
Since in our energy we have a large number of overlapping
triple cliques, we apply property III-A to simultaneously
approximate the energy on all triple cliques and sum up the
resulting approximations.

In practice, for each triple clique, we use an approach that
avoids solving systems of equations and implicitly selects a
specific set A. Note, any discrete potential φ can be written as a
combination of multilinear functions of variables (x1, . . . , xn),
see (3). In this case, it is easy to verify that Taylor expansion
φk of the potential φ around configuration xk is a linear func-
tion satisfying Prop. III-A.1. That is, φk(x) agrees with φ(x)
on configuration xk and n other “neighboring” configurations
obtained by flipping one of the variables in xk = (xk1 , . . . , x

k
n).

In our case, omitting the constant terms, Taylor expansion
of (3) around xk yields3:

φk(xs, xt, xv) = (1− xkt ) · xkv · xs (10)
− xkv · xks · xt
+ (1− xkt ) · xks · xv.

The components in (10) have an intuitive interpretation.
Consider the first component (1 − xkt ) · xkv · xs. Recall that
pixels ps, pt, pv are on a line and pt is between ps and pv . If
the current configuration xk is such that xkt = 0, and xkv = 1,
then assigning label 1 to pixel ps violates convexity, assuming
pt and pv keep their labels unchanged from xk. The unary term
(1− xkt ) · xkv · xs penalizes this violation: assignment xs = 1
carries a penalty, whereas xs = 0 is not penalized. The other
two components in (10) have similar intuitive interpretations.

Summing approximations of all triple potentials in (9)
results in a linear function Ek

apprx(x) that coincides with the
original Econvexity(x) on current solution xk.

Approximation in (10) gives three unary terms for each
triple clique. Consider pixel ps ∈ l. It can be either the
leftmost, middle, or rightmost member of a clique on that
line. We need to sum the terms from all triple cliques on line
l involving pixel ps. First with ps being on the left, then in the
middle and finally on the right of the clique. All these terms
contribute to the unary potential uls(xs) for a single pixel ps4:

uls(xs) =
∑

(pt,pv)∈l
s<t<v

(1− xkt ) · xkv · xs (11)

−
∑

(pt,pv)∈l
t<s<v

xkt · xkv · xs

+
∑

(pt,pv)∈l
t<v<s

(1− xkv) · xkt · xs.

3Here we assume ω = 1. If ω 6= 1, all the derived formulas should be
multiplied by ω.

4For brevity we use uls(xs) instead of ulps (xs).
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The full Taylor based unary term for pixel p ∈ Ω sums the
above expression over all lines passing through p.

Fig. 5 illustrates the resulting unary terms arising from
such approximation. They encourage any holes or concav-
ities in the foreground segment to be filled in, and any
protrusions/disconnected components to be erased. Efficient
computation of (11) is discussed in Section III-B.

There is a relation between the Taylor unary terms in (11)
and parallel ICM algorithm, first noted in [16]. However, our
trust region framework has many differences from parallel
ICM [16]. See [9] for the experimental comparison.

B. Computation of Ek
apprx via Dynamic Programming

Naive computation of the summations in (11) is too costly.
We now explain how to compute the unary terms in (11)
efficiently. Similarly to Sec. II-A, the speedup is achieved with
running sums on each line.

Let s, t, v enumerate the pixels on line l. In (11), the first
sum counts the number of pixel pairs (pt, pv) such that s <
t < v and xkt = 0, xkv = 1. The second sum counts the number
of pixels pairs (pt, pv) such that t < s < v and xkt = xkv = 1.
The last sum counts the number of pixels pairs (pt, pv) such
that t < v < s and xkt = 1, xkv = 0.

Let C− and C+ be as in (6). Recall that each of them can
be computed in one pass over the line. Then the second sum
in (11) is simply C−(s) ·C+(s). For the other two sums, we
need additional running sums.

Denote by A−(s) as the number of pixel pairs (pt, pv)
preceding pixel ps such that xkt = 1, xkv = 0 and pixel pt
precedes pixel pv ,

A−(s) =
∑

(pt,pv)∈l
t<v<s

(1− xkv) · xkt .

Similarly, we define A+(s) the number of pixel pairs (pt, pv)
succeeding pixel ps such that xkt = 0, xkv = 1 and pixel pt
precedes pixel pv ,

A+(s) =
∑

(pt,pv)∈l
s<t<v

(1− xkt ) · xkv .

Given C−, we compute A− in one pass over line l using
A−(0) = A−(1) = 0 and recurrence A−(s) = A−(s − 1) +
(1− xks−1) · C−(s− 1).
A+ is computed analogously to A−, given C+. Then the

first sum in (11) is A+(t) and the third sum is A−(t), and
uls(xs) = xs · [A+(s)− C−(s) · C+(s) +A−(s)].

Computing A− and A+ is linear in the number of pixels
on a line. For orientation di, each pixel appears on one line
only. Therefore we can compute A− and A+ for all lines
in O(mN) time, where m is the number of orientations and
N = |Ω|. Then the unary term for each pixel is computed
in O(m) time. Thus the total time to compute Taylor based
unary terms for all pixels is O(mN).

C. Quadratic Approximation of Econvexity

Linear approximation derived in section III-A works well
for most synthetic and natural images. However, we were able

to design synthetic examples (see Fig. 14 and Fig. 15) where
linear approximation yields poor results for some initializa-
tions. In this section we derive a quadratic approximation that
gives better results but at a larger computational cost.

As before, we derive approximation Ek
apprx(x) for

Econvexity(x) in (4) around current solution xk. It is sufficient
to derive a quadratic approximation φk(xs, xt, xv) for a clique
φ(xs, xt, xv) and then substitute into (9).

Similarly to linear approximation in Sec. III-A, we first
try second-order Taylor expansion of (3) around xk. Omitting
constants, we get:

φk(xs, xt, xv) = xs · xv (12)
− xks · xt · xv − xs · xkt · xv − xs · xt · xkv
+ xs · xkt · xkv + xks · xt · xkv + xks · xkt · xv.

The second and third lines in (12) contain submodular
quadratic and unary terms. The first term in (12) is supermod-
ular and therefore cannot be optimized directly using standard
techniques. We tried to replace the non-submodular term with
two different approximations: (i) xs · xv ≈ xks · xv + xs · xkv ,
i.e. Taylor-based unary approximation; (ii) xs · xv ≈ 0, i.e.
zero approximation. Both produce poor results (omitted) on
the difficult example in Fig. 15.

We now derive an alternative quadratic approximation.
Recall from Sec. III-A that linear approximation in (11) can
be derived from parallel ICM [16]. First we give details of
this derivation and later extend it to quadratic case.

In ICM, given current labeling xk, we fix the labels of all
pixels except one, and optimize over the remaining variable.
For example, fixing all labels except at pixel p, the clique
potential in (3) reduces to a unary term xs · (1 − xkt ) · xkv .
In parallel ICM this is done simultaneously for all pixels,
thus explaining the name parallel. For a given triple clique
(ps, pt, pv), summing up the reductions for pixels p, q and
r, and omitting the constant term xks · xkv , gives exactly the
same linear approximation as in Taylor based approximation
derived in (10). This is a standard single pixel ICM, which we
distinguish from a more general version described below.

The propose a new quadratic approximation based on
parallel pairwise (two pixel) ICM. Similarly to single pixel
ICM, given current labeling xk, we now fix the labels of all
pixels except a pair of interacting pixels. For example, fixing
the labels of all pixels except (xs, xt), we get the following
quadratic reduction of the clique potential in (3):

xs · xkv − xs · xt · xkv .

Repeating the same procedure for pixel pairs (q, r) and
(p, r) and summing up all the reductions results in:

φk(xs, xt, xv) = xs · xkv − xs · xt · xkv
+ xs · xv − xs · xkt · xv
+ xks · xv − xks · xt · xv

(13)

Note that the approximation in (13) contains a non-submodular
term xs · xv and, therefore, cannot be efficiently optimized
with standard techniques. As previously, we can replace the
supermodular term with its linear approximation. We tried two
different approximations: xs · xv ≈ xks · xv + xs · xkv and



IN IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), VOL. 39, NO. 2, PP. 258-271, FEBRUARY 2017 6

Fig. 4. First row shows synthetic images with added noise σnoise = 0.2; Second and third rows show contours and masks of segmentation, ω = 0.1. We
used log-likelihood appearance terms, (µfg = 0, σfg = 0.1) and (µbg = 1, σbg = 0.1). The convexity prior removes noise, connects components and fills
holes while preserving sharp corners.

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 5. First and second rows show unary approximation terms of Econvexity as in (11) during the first and second iterations of trust region for the
examples in Fig. 4. Red-yellow colors denote preference to background, and blue-cyan colors - preference to foreground. Unary terms encourage filling of
holes/concavities and removal of protrusions/disconnected components.

xs ·xv ≈ 0, and the second one works better in practice. Thus,
our final quadratic approximation based on pairwise ICM is:

φk(xs, xt, xv) = xs · xkv − xs · xt · xkv
− xs · xkt · xv
+ xks · xv − xks · xt · xv

(14)

Observe that pairwise ICM approximation in (14) is differ-
ent from the second order Taylor approximation in (12) even
though the single pixel ICM approximation coincides with the
first order Taylor approximation.

Pairwise ICM approximation is more accurate than linear
approximation. It coincides with the original triple clique
potential φ(x) on at least five out of eight configurations.
More precisely depending on the current configuration xk

the approximation coincides on either five, six or seven con-
figurations. This is in contrast to at least four out of eight
configurations for the linear approximation. Pairwise ICM
approximation (14) works better than linear approximation,
but is less efficient (see Sec. IV-D3). In each iteration, two
new submodular pairwise cliques are created for each triple
clique based on current solution. Furthermore, while dynamic
programming can be used to efficiently compute unary terms,
the same ideas do not apply to pairwise terms. Thus, opti-
mization of quadratic approximation is more time consuming,
compared to the unary case. Nonetheless, approximation based

on pairwise ICM may be useful for optimization of energies
other than Econvexity.

IV. EXPERIMENTS

Below we apply convexity shape prior to image segmenta-
tion. We discretized orientations using 11×11 stencil yielding
40 orientations for all synthetic images. For natural images we
found a 5 × 5 stencil yielding 8 orientations sufficient. Note,
since the convexity term is NP-hard and our optimization is
local, in general, we cannot guarantee convex results. However
in practice the number of violations is either zero or negligible.

We collected a new dataset with ground truth convex seg-
mentations. The code and the dataset are available from http:
//vision.csd.uwo.ca/code/ and http://vision.csd.uwo.ca/code/.

The remainder of this section is structured as follows. First
in Sec.IV-A we apply our method as described in Algorithm 1
(i.e. using linear approximation and dynamic programming) to
synthetic and natural images. We call this approach “Direct”
to distinguish it from subsequent variants. Next, in Sec.IV-B
we experiment with alternative central-clique and local con-
vexity models. In Sec. IV-C we compare our “Direct” opti-
mization with existing state-of-the-art optimization methods.
Finally, in Sec. IV-D we discus limitations of our direct
approach and evaluate two possible solutions: Gradual Non-
Submodularization in Sec. IV-D2 and trust region based on
quadratic approximation in Sec. IV-D3.

http://vision.csd.uwo.ca/code/
http://vision.csd.uwo.ca/code/
http://vision.csd.uwo.ca/code/
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Fig. 6. Illustration of robustness to parameter ω: results for length regularization are shown with blue color and for convexity shape prior - with green. See
text for details.
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Fig. 7. Illustration of robustness to parameter ω: results for length regular-
ization are shown with blue color and for convexity shape prior - with green.
See text for details.

A. Direct approach: Trust Region with Linear Approximation

First we validate our method on synthetic images with noise
N (0, 0.2), see Fig. 4. We assume given target appearance
distributions for foreground and background, and combine
standard log-likelihood data terms with the convexity shape
prior

E(x) = Eappearance(x) + Econvexity(x).

Here Eappearance(x) =
∑

p∈ΩDp(xs) is the appearance term,
Dp(xs) = − logPr(Ip|xs) and Econvexity(x) is as in (4).
Fig. 4 demonstrates that our convexity prior removes noise,
insures connectivity and fills in holes while preserving sharp
corners.

Next, we use convexity prior in interactive segmentation
of natural images with user scribbles. The convexity prior is
especially useful for images where there is an overlap between
the foreground and background appearance, see Figures 6-
10. Such overlap often leads to holes in the foreground or

larger parts of the background erroneously segmented as the
foreground. The convexity prior prevents such results. Length
regularization is either too weak to remove the noise or too
strong causing shrinking.

We now specify the details of our interactive segmenta-
tion. For appearance we use the recent submodular L1 color
separation term proposed in [26]. This term is based on
L1 distance between unnormalized histograms of foreground
and background colors. Unlike standard appearance models,
the color separation does not require re-estimation of the
parameters and can be efficiently and globally optimized. We
use 16 bins per color channel and combine the color separation
term with the convexity prior, subject to hard constraints on
the user scribbles

E(x) = EL1(x) + Econvexity(x).

We then compare with the standard length regularization

E(x) = EL1(x) +
∑

(pq)∈N

ω[xs 6= xt].

Figures 6-8 show segmentation results on two natural and
one medical image. We vary the weight ω for our convexity
prior in (3) and optimize as discussed in Sec. III. Similarly, we
vary the weight ω for the length regularization and optimize
with one graph-cut [26]. We show the resulting segmentations
and compare them with the results obtained without regulariza-
tion. We use green frames - for convexity, blue - for length.
For length regularization we chose values ω for which the
segmentations change significantly. The length regularization
is either too weak to remove the noise or too strong and has a
shrinking bias. Figure 10 shows similar results on additional
natural images demonstrating the sensitivity of the length
regularization and robustness of convexity shape prior.

We experiment both with contrast sensitive length (ω de-
pends on pixel pair (p, q) as in [4]) and pure length, see Fig. 7.
There is no significant difference in their performance. The
same sensitivity to the parameter ω is observed; compare the
red (contrast sensitive) frames with the blue ones (pure length).

Our model is parameter-free due to infinity cost constraints.
In practice, we have to choose finite ω. There is almost no
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Input
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ω= 0.01 ω= 0.1 ω= 1 ω= 100

  

ω= 100
Length Regularization

Convexity Shape Prior

ω= 0

Fig. 8. Robustness to parameter ω: results for length regularization are shown with blue color and for convexity shape prior - with green. See text for details.

x100% x25% x11%Input Img User Scribbles

Fig. 9. Robustness to scale: segmentation results obtained for original images
and their 25% and 11% scaled versions. We used ω = 10 and 16 bins per
color channel in all experiments. User scribbles were scaled accordingly for
each experiment.

variation in segmentation results for different values of ω, once
the value is high enough, making it a very robust regularizer.
In fact, for each image we can compute finite ω such that
violating a single constraint is more expensive than the initial
solution. In cases where using such large ω leads to poor
local minimum, gradually increasing the weight ω (annealing)
can potentially escape to a better solution (see Gradual Non-
Submodularization in sec. IV-D2).

There is also very little variation in segmentation results
with change of scale. Figure 9 shows segmentation results ob-
tained on several natural images and their 25% and 11% scaled
versions using the same parameters for ω and appearance. User
scribbles were scaled accordingly in each experiment.

B. Alternative convexity models

Below we discuss some variations of our convexity model.

p
q

r

1) Central Cliques Model:
One natural question regard-
ing our model is whether we
need all the triple cliques on
a line to enforce convexity.
Indeed, it is sufficient to use
a smaller subset consisting
only of central triple cliques
(p, q, r), i.e. |p− q| = |q− r|,
see example on the right. This reduces the number of triple
cliques from O(n3) to O(n2) for a line with n pixels.
However, our dynamic programming procedures for evaluation
(Sec. II-A) and for approximation (Sec. III-B) are no longer
applicable. Brute force computation takes O(n2) operations
per line with n pixels, as opposed to linear time with our
dynamic programming for the full model. Nonetheless, we
compare between our full model and the central cliques
model, see Fig.11. Since the resulting segmentations have no
convexity violations their energies can be directly compared.
The energy is slightly better with the central cliques, but its
running time is 25-30 times longer. The difference in time will
be even more significant for larger images.

2) Local Convexity Model: Another natural variation of our
model is the local convexity model, in which we penalize local
spatially symmetric configurations 1-0-1 within a fixed size
neighborhood around each pixel. The number of triple cliques
is linear in the number of image pixels and the neighborhood
size. Similarly to our full model, the local convexity model
can be optimized using our trust region method. Our dynamic
programming is not directly applicable.

The local model can only enforce local convexity. Namely, it
is blind to violations of convexity that lie at a scale larger than
the neighborhood size. Therefore the results can contain holes,
multiple connected components and large scale concavities.
Consider a 100 × 100 synthetic image example in Fig. 13.
With a small neighborhood size, the number of triple cliques is
small and computation is efficient, but the results are far from
convex (Fig. 13, top-right). Moreover, small neighborhood size
yields very coarse discretization of orientation. As we increase
the neighborhood size, the number of convexity violations is
reduced (Fig. 13, bottom row), eventually reaching a convex
segmentation for a large enough neighborhood. However, the
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Input User Scribbles Length Regularization Convexity Regularization

ω=0.005 ω=1ω=0.32 ω=0.33

ω=0.005 ω=1ω=0.795 ω=0.796

ω=0.005 ω=1ω=2 ω=8

ω=0.005 ω=0.1ω=0.57 ω=0.575

Fig. 10. Additional results comparing length and convexity regularizers. Except for the second row, all images demonstrate sensitivity to length weight ω.

E1=2214, T=2.4 sec. E2=1835, T=52 sec.283x177

400x266 E1=15020, T=4.6 sec. E2= 14666, T=122 sec.

Input User Scribbles No Regularization All Cliques Central Cliques

Fig. 11. Comparison between the full convexity model with all triple cliques vs. central cliques convexity model. The later does not allow efficient evaluation
and approximation of Econvexity using dynamic programming and therefore is much slower.

model becomes very slow to optimize.

C. Alternative Optimization Methods

The most related optimization method to ours is LSA [9],
which is also based on trust region framework. However, it
was designed for non-submodular energies with only pairwise
cliques. For this class of energies, LSA reports state-of-the-
art results [9]. LSA approximates the energy by replacing
non-submodular pairwise cliques with their Taylor expansions
while preserving all submodular pairwise cliques. Even though
our convexity prior is not pairwise, it is possible to reduce each
triple clique to several pairwise potentials using an additional
auxiliary node [15] and optimize them with LSA. We call
this reduced version r-LSA. Reducing all triple cliques would
result in a prohibitively large number of auxiliary nodes and
pairwise cliques for our full convexity model. Even for the
central clique model the number of resulting pairwise cliques
is quite large. For an n× n image central cliques model with
m orientations produces O(mn3) pairwise potentials, which is
very costly both to optimize and to evaluate. Nonetheless, we
tried this approach on a small 91× 122 image. The first two
rows in Figure 12 compare r-LSA approach to our method.

We apply both methods to the central clique model5 and vary
ω. Note that r-LSA is an order of magnitude slower than the
slow version of our method. As the value of ω increases, r-
LSA fails to obtain satisfactory solutions. We believe that there
could be serious drawbacks in splitting clique φ(xs, xt, xv)
into individual submodular and supermodular parts and then
approximating the supermodular part. One sign of a problem
is that there are infinitely many such decompositions and it is
not clear which one would give a better approximation.

Our full model with all triple cliques is also prohibitively
expensive for standard optimization methods designed for non-
submodular energies, such as QPBO [2] and TRWS [14].
However, we can use these methods to optimize the more
compact central clique model as well. The last two rows in
Figure 12 show segmentation results of QPBO and TRWS for
several values of ω. For values of ω that are not sufficiently
large to enforce convexity, all four methods, QPBO, TRWS,
r-LSA and Trust Region, return globally optimum, but useless
solutions. However, when ω is large enough, QPBO, TRWS

5Even though the full model is more efficient for our method, for this
experiment we use central cliques to have identical energies for direct
comparison.
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Fig. 12. Comparison between our method without dynamic programming (no DP), r-LSA, QPBO and TRWS on the central clique model with 8 orientations.
We use thresholded appearance terms for initialization when needed. As ω increases, making the energy more difficult, QPBO was not able to label any pixel
(shown in gray) and TRWS did not converge after 5000 iterations, which took several hours. For ω large enough to enforce convexity, all methods except
ours fail.

7x7, T=8.2s

15x15, T=90

Input Init

21x21, T=197.8s 41x41, T=199.8s

Fig. 13. Local Convexity Model: penalizes local 1-0-1 configurations within
a fixed neighborhood around each pixel. Small neighborhoods are efficient
to optimize but have very coarse discretization of orientation. Moreover, they
are sensitive to noise and might result in multiple disconnected components.
Larger neighborhood are slow to optimize.

and r-LSA fail to obtain a satisfactory result. Our trust region
approach obtains good results in all cases.

D. Optimization Limitations and Proposed Solutions

1) Local Minimum: Trust region framework is a local
iterative optimization and therefore we can only guarantee a
local minimum [10]. Figure 14 demonstrates some sensitivity
with respect to initialization. A trivial initialization with all

pixels in the foreground, denoted by “init 1” and delineated
by the red contour, leads to a local minimum. Initializing with
the maximum likelihood label per pixel, denoted by “init 2”
results in solution with better energy. Empirically, we obtain
better results starting with maximum likelihood labels. This is
consistent for all the experiments, both on synthetic and real
images.

2) Gradual Non-Submodularization: As shown in the ex-
periments with the natural images, segmentation with convex-
ity shape prior yields robust results for different values of
the weight ω, once they are high enough. However, we could
design a synthetic example (Fig. 15) where caution should be
used when selecting the weight ω in (3). High values of ω
tend to cause more aggressive optimization steps, and might
lead to a solution that is convex but far from a global optimum
(Fig. 15, top row, third column). Using low values of ω allows
deviation from convexity (Fig. 15, bottom-left). To obtain a
convex solution that avoids such local minima, the weight ω of
the convexity shape prior can be increased gradually, similarly
to the idea of “Graduated Non-Convexity” [1]. We can start
with a very low weight, where the energy is mostly guided by
the submodular appearance terms and is easier to optimize.
Then the result is used for initialization of the next round, in
which the weight ω is slightly increased. See an example of
such gradual non-submodularization on a synthetic image in
Fig.15 (bottom row).

For our discrete energy, gradual increase in weight ω makes
the energy gradually more non-submodular, more non-linear
and, therefore, more difficult. Similar improvements over
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E=4975
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Starting with Init 1

E= 4275

Local Minimum 2 Gradual Non-
Submodularization
Starting with Init 2
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Fig. 14. Local optimization of convexity shape prior might yield different segmentation results for different initializations. We used an 11 × 11 mask to
discretize orientation, ω = 100 and given target appearance models (µfg = 0, σfg = 0.1), (µbg = 1, σbg = 0.1). Gradual Non-Submodularization yields
global minimum solutions (verified by geometrical arguments) using any initialization (see text for details).

ω=42, T=529sec. 
E= 17165.32 

ω=0.01 

InitInput

ω=0.3 ω=1

Linear Approximation, 
ω=42, T=85sec.
E=28375.29

Quadratic Approximation, 
ω=42, T=477sec.
E= 17248

Fig. 15. Gradual Non-Submodularization with Linear Approximation vs. Quadratic Approximation. First row: input image, initial solution based on data
terms, direct optimization with linear approximation resulting in weak local minimum, and direction optimization with quadratic approximation resulting in a
satisfying solution. Second row: Gradual non-submodularization. Each increase in ω starts new optimization using previous result as initialization. We used
standard log-likelihood data terms: (µfg = 0, σfg = 0.1), (µbg = 1, σbg = 0.1).

direct aggressive optimization are obtained in other synthetic
(see Fig. 14) and medical (see Fig. 16) images.

In Fig. 16 we apply convexity shape prior for liver segmen-
tation on an MRI image. Here again, high values of ω result
in a convex but not accurate solution (top-right). Values of
ω that are too low allow deviation from convexity (bottom-
left). Gradual non-submodularization (bottom row) escapes
such bad local minima and results in a solution with a lower
energy.

Gradual non-submodularization can also alleviate the sen-
sitivity of our trust region method to initialization. In Fig. 14
we were able to obtain the same global optimum starting with
either “init 1” or “init 2” for both synthetic examples.

To further evaluate the advantage of gradual non-
submodularization we collected a database of 51 natural
images. We manually segmented each image to obtain ground
truth and convexified the resulting foreground segment to
insure that ground truth is convex. We performed two sets of
experiments: using 5×5 orientations stencil (i.e. 8 orentations)
and 11× 11 stencil (i.e. 40 orientations.) In each experiment
we run both, our direct approach with ω = 10 and the
gradual non-submodularization approach with the schedule

ω = {0.0001, 0.001, 0.01, 0.1, 1, 10}. All methods were ini-
tialized with the solution that minimizes submodular L1 color
separation term proposed in [26] subject to user scribbles
constraint. Recall that L1 color separation does not require
re-estimation of the parameters and can be efficiently and
globally optimized. We used 16 bins per color channel.

We then compared the results in terms of mean running
time (in sec.), distance from the ground truth (percentage
of misclassified pixels) and energy (percentage of images in
which gradual approach obtains strictly lower energy. Table I
summarizes the results. While having a slightly longer mean
running time, gradual approach achieves more accurate results
with respect to the ground truth for both 5 × 5 and 11 × 11.
In terms of energy, gradual approach achieves lower energy in
more than 84% of the images.

Figure 17 shows several images from the database. The
database can be downloaded from http://vision.csd.uwo.ca/
data/. Rows 1, 4-6 show examples where gradual method
obtains lower energy than the direct approach with both 5× 5
and 11×11 orientation stencils. Second row shows an example
where direct and gradual approach converge to the same
solution. Third row shows an example where in case of 11×11

http://vision.csd.uwo.ca/data/
http://vision.csd.uwo.ca/data/
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Fig. 16. First row: liver MRI image, user scribbles, initial solution based on data terms, direct optimization with ω = 1 resulting in weak local minimum.
Second row: Gradual non-submodularization. See text for details. Here for appearance we used L1 color separation from [26].

Direct
Ap-
proach

Gradual
Non-
Subm.

Gradual
Approach
Achieves
Lower
Energy in

5× 5
Error 2.5% 2.1%
Runtime 10.9s. 15.4s. 86%(44/51)

11× 11
Error 2.5% 1.9%
Runtime 110.7s. 147.4s. 84%(43/51)

TABLE I
QUANTITATIVE COMPARISON OF DIRECT AND GRADUAL

NON-SUBMODULARIZATION APPROACH IN TERMS OF MEAN RUNNING
TIME, MEAN NUMBER OF MISCLASSIFIED PIXELS WITH RESPECT TO THE

GROUND TRUTH. THE LAST COLUMN SHOWS THE PERCENTAGE OF
IMAGES IN THE DATABASE FOR WHICH GRADUAL APPROACH ACHIEVED

LOWER ENERGY.

gradual method converges to a solution with less violations of
convexity but worse color separation resulting in overall higher
energy. Such cases comprise less than 15% of the database.
The visual difference between 5 × 5 and 11 × 11 stencils is
not significant and in most cases 5× 5 stencil is sufficient to
obtain good results on natural images. Note that convexity
model with 5 × 5 is relatively coarse and might result in
solutions that have large scale concavities (second row) or
several disconnected component (last row) that do not violate
any of the triple constraints. In such cases, we advise to use
higher resolution of orientation.

3) Quadratic Approximation Models: Another possible way
to improve optimization is to use more accurate approximation
models. In Sec. III-C we introduced quadratic approximation
model based on parallel pairwise ICM. For our dense con-
vexity model, this approximation is very inefficient. First, it
requires rebuilding the graph in each iteration for incorporat-
ing new quadratic potentials for each triple clique. Second,
evaluation of quadratic approximation cannot benefit from
the speed-up obtained with the linear dynamic programming.
However, quadratic approximation is more accurate than the
linear approximation model and can yield better segmentation
results. Figure 15 shows an an illustrative example of a
synthetic binary image with artificially added noise. We show
solutions obtained with linear (top row, third column) and
quadratic (top-right) approximations and juxtapose them with
gradual non-submodularization (bottom row).

To further evaluate the quality of our quadratic approxi-
mation model we collected an additional set of images. Due

the the slow running time we chose very small 50 × 50 yet
challenging synthetic binary images with artificially added
noise. In nine our of ten images, quadratic approximation
yielded solutions with lower energy. The average running time
was 27.15 and 36.75 sec. for linear and quadratic approxi-
mation models respectively. Note that the small difference in
running time is due to the small size of the images. Figure 18
shows input images (leftmost column), initial solutions (sec-
ond column), results obtained with linear approximation (third
column) and results obtained with quadratic approximation
(rightmost column). Though for our dense convexity model
quadratic approximation is very inefficient, it might be useful
for other high-order energies where the number of high-order
cliques is not as high.

V. CONCLUSION AND FUTURE WORK

We propose convexity prior as a new regularizer and de-
velop efficient discrete optimization based on trust region and
dynamic programming. Our convexity prior does not have
shrinking bias and is robust w.r.t. parameter ω,

In the future, we plan to explore meaningful extensions of
strict convexity. For example, we can explore contrast sensitive
convexity, which is similar to contrast sensitive length. The
penalty for convexity violation by triplet (ps, pt, pv) can carry
a smaller weight if there is a high contrast on a line connecting
pixels ps and pv . This formulation is straightforward, but the
main difficulty will be extending our dynamic programming
algorithms to handle this case. Another direction is to extend
our model to handle objects with multiple convex parts.
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Fig. 17. Qualitative comparison of direct and gradual approach using 5× 5 and 11× 11 orientation stencils. See text for details.
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