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Abstract

Early vision relies heavily on rectangular windows for tasks such as smoothing and
computing correspondence. While rectangular windows are efficient, they yield poor
results near object boundaries. We describe an efficient method for choosing an arbi-
trarily shaped connected window, in a manner that varies at each pixel. Our approach
can be applied to several problems, including image restoration and visual correspon-
dence. It runs in linear time, and takes a few seconds on traditional benchmark images.
Performance on both synthetic and real imagery appears promising.

1 Introduction

Many problems in early vision require estimating some local property of an image from
noisy data. Example properties include intensity, disparity and texture. These properties
are piecewise smooth; they vary smoothly at most points, but change dramatically at object
boundaries. In order to withstand noise, statistics must be collected over the pixels in a local
window. The shape of this window is of great importance. If the window contains more than
one object, it is difficult to obtain a correct solution.

For reasons of efficiency, most algorithms use rectangular windows of fixed size. Such
windows poorly model the boundaries of real-world objects. This results in several well
known problems; for example, corners tend to become rounded, and thin objects (such as
cords) often disappear or expand. In this paper, we describe an efficient method for selecting
a connected window of arbitrary shape.

Consider the problem of image restoration, where an image with piecewise constant
intensities must be recovered from noisy data. The observed intensity at a pixel P is ip,
which is related to the true intensity itp by ip = itp + νp, where νp is the noise. Typically the
true intensity at a fixed pixel P is estimated by taking a weighted average over pixels in a
fixed window Wp containing P . Usually Wp is a square of fixed size centered at P . Fixed
window solutions consider the set of residuals R (Wp , i) = { (iρ − i) | ρ ∈ Wp } associated
with each window Wp and each intensity i. The estimate ı̂p of the true intensity at pixel
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P will be ı̂p = arg maxi E {R (Wp , i)} , where E is some function that evaluates a set of
residuals. With a least squares fit, for example, E{R} = − ∑

r∈R r2.
Our approach, in contrast, computes a different window Wp(i) for each hypothesized

intensity i at P . Each (non-empty) Wp(i) is a connected set of pixels containing P that can
be of arbitrary shape. We select the intensity ı̂p such that ı̂p = arg maxi E(Wp(i)), where
E evaluates the window Wp(i). The method we provide in section 3 builds Wp(i) so that
all residuals in R (Wp(i) , i) are small and evaluates a window by its size. Other ways of
constructing windows and alternative choices of E will be discussed in sections 4.3.2 and 6.

We begin our discussion with a review of related work. In section 3 we introduce our
variable window solution and show its use for image restoration. Section 4 describes the use
of variable windows for visual correspondence. In section 5 we give empirical evidence of the
effectiveness of our approach, using both synthetic and real imagery with ground truth. We
close by suggesting a number of extensions to our basic method.

2 Related work

Many problems in early vision involve assigning each pixel a label based on noisy input data.
These problems are ill-posed, and thus cannot be solved without somehow constraining
the desired output. Some approaches [11, 19] assume that the answer should be smooth
everywhere, which causes difficulties near object boundaries.

In practice, most methods aggregate information over a fixed, rectangular window. Fixed
window methods yield good results when all the pixels in the window Wp come from the
same population as the pixel P . However, difficulties arise when Wp overlaps a discontinuity
(i.e., object boundary). An example is shown in figure 1, where the task is to estimate the
intensity at the pixel labeled P after the image has been corrupted by noise. Due to the
discontinuity, the data comes from a bi-modal population. Conventional statistical methods
perform poorly in this situation.

In the last decade, a number of authors have addressed this problem using robust statis-
tics [2, 16]. Techniques from robust statistics reduce the influence of gross errors (called
outliers) in a data set. From the point of view of robust statistics, one set of points in a
bi-modal distribution should be classified as outliers and thus disregarded. Robust methods
are evaluated in terms of their breakdown point, which determines the percentage of outliers
they can tolerate (see [21] for a formal definition). Optimal methods such as Least Median
Squares [21] have a breakdown point of just under 50%, and this cannot be improved upon
under general assumptions.1 These methods thus fail when the correct solution is in the mi-
nority, as illustrated in figure 1. This situation is very common at the boundaries of objects
and at corners.

Several recent papers [13, 14, 15] attempt to overcome these limitations by allowing the
size of the window to vary across the image. These methods are still restricted to rectangular
windows, and impose significant computational overhead. Little [15] uses correlation with
several different rectangular windows, and selects the window that best explains the data.

1Stewart [22] gives one example of how to achieve a higher breakdown point by making assumptions
about the distributions of outliers.
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P

Figure 1: A window Wp overlapping a discontinuity. The pixel labeled P should have the
light pixels’ intensity. Note that most pixels in Wp have the dark intensity.

Jones and Malik [13] take a similar approach, although image matching is performed via
filter banks. Both of these methods also reduce the influence of pixels near the outskirts of
the window. Kanade and Okotumi [14] model the distribution of disparity within a window.
They perform a greedy search of the space of rectangular windows, in order to minimize the
uncertainty of their estimate. We will provide an empirical comparison of our results with
Kanade and Okotumi’s in section 5.

Another class of solutions is based on global optimization. These methods simultaneously
compute a piecewise smooth solution and estimate the discontinuities. The best known such
approach uses Markov Random Fields [7]. Unfortunately, MRF’s require global optimization
of a non-convex objective function, in a space with extremely high dimension. As a result,
they are in general computationally intractable, although there are some recent fast algo-
rithms for certain MRF models based on graph cuts [4, 12]. We will detail the relationship
between our work and MRF’s in section 6.1.

3 Image restoration with variable windows

We will introduce our approach by showing its use for image restoration, where a piecewise
constant image is corrupted by noise. Let I t

p and Ip be random variables, where I t
p denotes

the true intensity of the pixel P while Ip represents the observed intensity of pixel P . Note
that ip denotes an observed intensity of P in a fixed experiment, that is, ip is a particular
realization of the random variable Ip. Let P i represent the event

{
I t
p = i

}
. If P i holds then

ip = i + νp, where νp is a noise term.
Let the noise model be given by the function f(ip, i) = Pr(O|P i), where O is the event

{Ip = ip}. We define P i to be plausible if the likelihood of P i is greater than the likelihood
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of ¬P i given the observed data Ip = ip. The maximum likelihood test for plausibility is
given in detail in section 3.1. For the moment, simply note that P i is plausible if intensity
ip observed at P is close to i. More precisely

|ip − i| < εp,

where the exact form of εp will be given in equation (4). If P i is plausible we equivalently
say that pixel P is plausible for intensity i, or that intensity i is plausible for pixel P .

Consider the problem of estimating the true intensity of a particular pixel P . We con-
struct a window Wp(i) for each hypothesized intensity i. We choose Wp(i) to be the maximal
connected set of pixels containing P such that all pixels in Wp(i) are plausible for i.2 If P i

is not plausible, then Wp(i) is empty. We then estimate the true intensity at P by

ı̂p = arg max
i

E(Wp(i)). (1)

We choose E(W ) = |W |, which means that we select the ı̂p that maximizes the number of
pixels in Wp(i). An example of our method in action is shown in figure 2. Alternate ways
to construct and evaluate windows are proposed in section 6.

3.1 Determining plausibility

We determine whether the intensity i is plausible for a pixel P via maximum likelihood
hypothesis testing. Consider the following two hypotheses:

H0 : P i,

H1 : ¬P i.

We choose between H0 and H1 by comparing their likelihoods; in other words, we assume
there is no prior bias in favor of H0 or H1. The event P i is plausible if and only if

Pr(O|H0) > Pr(O|H1), (2)

where ip is the observed intensity of the pixel P .
By definition, Pr(O|H0) = f(ip, i). To compute Pr(O|H1) we proceed as follows:

Pr(O|H1) =
Pr(O ∩ H1)

Pr(H1)

=
∑
j 6=i

Pr(O ∩ P j)
Pr(H1)

=
∑
j 6=i

f(ip, j) · Pr(P j)
Pr(H1)

.

2We define a set S of plausible pixels to be maximal if every plausible neighbor of every pixel in S is also
in S.
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a) Initial data

b) "Black" components

d) Final answer

c) "White" components

Figure 2: Our method for image restoration. Pixels are labeled in (a) with their plausible
intensities (shown as black or white). For simplicity, there are only 3 pixels for which both
intensities are plausible. The windows we construct for the black and the white intensity are
shown in figures (b) and (c). The final assignment of intensities to pixels is shown in (d).
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It follows that P i is plausible if and only if

f(ip, i) >
∑
j 6=i

f(ip, j) · Pr(P j)
Pr(H1)

.

Multiplying both sides of this inequality by Pr(H1) and then adding to both sides f(ip, i) ·
Pr(H0) we obtain our plausibility test

f(ip, i) >
∑
j

f(ip, j) · Pr(P j), (3)

where j ranges over all possible intensity values.
Equation (3) can be looked at from two different perspectives. First, it can be written as

Pr(Ip = ip|P i) > Pr(Ip = ip).

This is a fairly intuitive test of the likelihood of P i. Second, it can also be written as

f(ip, i) > f̄(ip)

where f̄(ip) is the mean value of the function f(ip, ·) obtained by averaging out the second
argument.3

To test the plausibility of P i for a particular f , we assume for simplicity that the prior
probabilities Pr(P j) are all equal. Then f̄(ip) = 1

|I| · ∑
j f(ip, j), where |I| is the number

of possible intensities. Most noise models f (including normal or uniform noise) can be
represented as f(ip, i) = φ(|ip − i|), where φ is a non-increasing function on R+. In this case,
P i is plausible if and only if

|ip − i| < εp (4)

where εp = φ−1(f̄(ip)). This test is illustrated in figure 3.

3.2 Efficiency

If there are n pixels and m possible intensities, the running time of our method is O(nm).
Our method has three steps, each of which takes O(nm) time. The first step is to test each
hypothesis P i for plausibility. The plausibility test of equation (4) can be performed in
constant time, and there are nm hypotheses to test for plausibility, so the running time of
the first step is O(nm).

We next must compute the correct window for each pixel. We consider each intensity i
in turn. Recall from the definition of Wp(i) that we construct a maximal connected set of
pixels for which i is plausible. This is done by computing connected components of pixels
plausible for i. At this stage we also compute the size of each component, which can be folded
into the connected components subroutine without changing the running time. For a fixed
pixel P , the window Wp(i) is precisely the connected component containing P . Connected

3Note that for a fixed pixel P either all hypotheses P i have identical likelihoods, or there is at least one
plausible and one non-plausible hypothesis.
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0 |ip − i|εp

f̄ (ip)

φ

Figure 3: P i is plausible if |ip − i| < εp.

components can be computed in O(n) time [24], so the running time of the second step is
O(nm).

The third step is to assign an intensity to each pixel P . We select the i that maximizes
the size of Wp(i). At each pixel we consider at most m possible windows, so the third step
also requires O(nm) time.

4 Variable window correspondence

Our method can also be applied to the correspondence problem, which is the basis of stereo
and motion. Given two images of the same scene, a pixel in one image corresponds to a
pixel in the other if both pixels are projections along lines of sight of the same physical scene
element. Our basic framework is unchanged; however, the definition of plausibility for this
problem is more complex.

Let Ip and I ′
p be random variables denoting the intensity of pixel P in the first and the

second images. The small letters ip and i′p will denote intensities observed in a particular
experiment. We will denote a disparity by d, and the set of possible disparities by D. In
stereo, disparities are typically restricted to lie along a scanline, while motion involves 2D
disparities. We will write the statement that pixel P has disparity d by P d. If P d holds,
then

ip = i′p+d + νp, (5)
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where νp is the measurement error. For any event E we define Pr′(E) = Pr(E|I ′), where I ′

is the observed intensities from the second image. Formally, I ′ =
⋂

p

{
I ′
p = i′p

}
, where the

intersection is over all pixels. Similarly we define Pr′(E|F ) = Pr(E|F ∩ I ′). As before, let O
denote the observed event {Ip = ip}.

Let the function f(i, i′) specify the noise model, that is the distribution of intensity of a
pixel in the first image given intensity i′ of the corresponding pixel in the second image,

f(ip, i′) = Pr
(
O|P d ∩

{
I ′
p+d = i′

})
.

The condition P d means that the pixel p in image I corresponds to the pixel p + d in image
I ′; given P d, it is reasonable to assume that the intensity Ip depends only on the intensity
I ′
p+d. This allows us to write

Pr′(O|P d) = f(ip, i′p+d). (6)

We define the event P d to be plausible if

Pr′(O|P d) > Pr′(O|¬P d).

Note that if P d is plausible we equivalently say that pixel P is plausible for disparity d
or that disparity d is plausible for pixel P . In section 4.1 we use equation (6) to simplify
the plausibility testing procedure. We demonstrate that P d is plausible if and only if ip is
sufficiently close to i′p+d.

Consider the problem of estimating the true disparity at a fixed pixel P . We construct a
window Wp(d) for each hypothesized disparity d at P . We choose Wp(d) to be the maximal
connected set of pixels containing P such that all pixels in Wp(d) are plausible for d. As in
section 3, we estimate the disparity at P by

d̂p = arg max
i

E(Wp(d)),

where E(W ) = |W |. Other ways of building Wp(d) and other choices of E are discussed in
sections 4.3 and 6.

4.1 Plausibility testing

Consider some fixed disparity d for pixel P . We need to choose between the two hypotheses:

H0 : P d

H1 : ¬P d.

P d is plausible if H0 is more likely than H1. The statement that the pixel P is occluded will
be represented by P o.

We choose between H0 and H1 by comparing the likelihoods Pr′(O|H0) and Pr′(O|H1).
From equation (6), we have

Pr′(O|H0) = f(ip, i′p+d).
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To compute Pr′(O|H1) we proceed as follows:

Pr′(O|H1) =
Pr′(O ∩ H1)

Pr′(H1)

=
Pr′(O ∩ P o) +

∑
δ 6=d Pr′(O ∩ P δ)

Pr′(H1)

=
Pr′(O|P o) · Pr′(P o) +

∑
δ 6=d f(ip, i′p+δ) · Pr′(P δ)

Pr′(H1)
.

To prefer H0 over H1 we should have

f(ip, i′p+d) >
Pr′(O|P o) · Pr′(P o) +

∑
δ 6=d f(ip, i′p+δ) · Pr′(P δ)

Pr′(H1)
.

Multiplying both sides by Pr′(H1) and then adding f(ip, i′p+d) · Pr′(H0) gives

f(ip, i′p+d) > Pr′(O|P o) · Pr′(P o) +
∑
δ∈D

f(ip, i′p+δ) · Pr′(P δ).

We will assume for simplicity that the probability of occlusion Pr′(P o) is given by some
constant q and that Pr′(O|P o) = 1

|I| where |I| is the number of possible intensities. This
yields the inequality

f(ip, i′p+d) >
q

|I| +
∑
δ∈D

f(ip, i′p+δ)Pr′(P δ).

If the prior probabilities of all disparities are equal, then Pr′(P δ) does not depend on δ.
Consequently,

q + |D|Pr′(P δ) = 1 ∀δ ∈ D,

where |D| denotes the number of possible disparities. Finally, the comparison test can be
equivalently rewritten as

f(ip, i′p+d) >
q

|I| +
1 − q

|D| ·
∑
δ∈D

f(ip, i′p+δ). (7)

This is analogous to our test (3) for image restoration, except for the presence of occlusions.
We can use any noise model f in formula (7). Again, most noise models (including

uniform or gaussian noise) satisfy f(i, i′) = φ(|i − i′|), where φ is a non-increasing function
on R+. In this case, if ∆P d denotes |ip − i′p+d| then the plausibility test of equation (7) is
equivalent to

∆P d < εp, (8)

where

εp = φ−1


 q

|I| +
1 − q

|D| ·
∑
δ∈D

φ(∆P δ)


 .

This provides a way to test plausibility in O(|D|) time at each pixel.
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4.2 Efficiency

The efficiency of our method is linear in number of pixels and in the number of disparities.
The argument is very similar to that given in section 3.2. As before, there are three steps
to our method. If we let m = |D| be the number of disparities, then the complexity of each
step is again O(nm). In the first step, we test the plausibility of each hypothesis P d. If
the noise model f and the parameter q are specified in advance, then εp can be computed
in O(m) time at each pixel. The second step of our method is to consider each disparity in
turn; in this respect, our solution resembles diffusion [23]. For the disparity d, we compute
connected components of pixels plausible for d. This immediately gives us Wp(d) for any
pixel P for which the disparity d is plausible. The third step is to assign a disparity to each
pixel. For each pixel P , we need to consider only disparities d for which P d is plausible. We
then select the d so that Wp(d) has the largest size.

4.3 Relaxing the constant brightness assumption

The model of the correspondence problem given in equation (5) assumes that corresponding
points have constant brightness. This assumption is quite common in motion or stereo (e.g.,
[1, 11]), but it is often violated in practice. For example, Cox et al. [6] point out that most
of the images in the JISCT collection [3] violate the constant brightness assumption.

There are several reasons why the constant brightness assumption is invalid. Stereo uses
two cameras, and cameras have different internal parameters. The difference between two
cameras can be modeled as a linear transformation of intensities I = g · I ′ + b, where we
will call the multiplier g the gain and the offset b the bias. Bias can be removed by low-pass
filtering the images [18], although this loses image detail.

Other factors also cause corresponding points to have different intensities. For example,
there are changes in illumination and viewing angle, which are extremely difficult to model for
arbitrary scenes. Gennert [8] proposes a spatially varying gain, which can be justified when
the changes in albedo are more important than the changes in reflectance. Negahdaripour
and Yu [17] give a general model for this problem. They allow gain and bias to vary smoothly
over the image, and solved for gain, bias and disparity simultaneously. They explicitly assume
that the gain, bias and disparity are constant in a square window of fixed size surrounding
each pixel.

Our method can be extended to handle changes in brightness in two ways. Both exten-
sions permit gain and bias to vary over the image, as does [17]. However, we use variable
windows instead of fixed ones. Our extensions differ in terms of the model for brightness
change, and in terms of computational complexity. One extension assumes constant gain
and bias per window, while the other allows gain and bias to vary over a window.

4.3.1 Constant gain and bias per window

It is straightforward to generalize our algorithm to solve for constant gain and bias within
the window. We treat the gain g and the bias b as piecewise constant unknowns, just like
the disparity d. We thus generalize the error model (5) to

ip = g · i′p+d + b + νp. (9)
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We then estimate the true value of g and b at each pixel by using the same technique that
we use for determining the disparity d.

Let D, G, and B denote the sets of all possible disparities, gains, and biases. Let P d,g,b

denote the event that pixel P has disparity d ∈ D, gain g ∈ G, and bias b ∈ B. We call a
triplet {d, g, b} plausible for P (or a pixel P is plausible for {d, g, b}) if P d,g,b is more likely
then ¬P d,g,b, given the observed data. We assume for simplicity that the prior probabilities
of all values of gain in G and bias in B are identical. It is easy to carry out the same
calculations we did in subsection 4.1 to check that {d, g, b} is plausible for P if

∆P d,g,b < ε̃p

where ∆P d,g,b = |ip − g · i′p+d − b| and

ε̃p = φ−1


 q

|I| +
1 − q

|D| · |G| · |B| ·
∑

δ∈D, g∈G, b∈B

φ(∆P δ,g,b)


 .

To obtain our estimate {d̂, ĝ, b̂} at a fixed pixel P we consider all triplets {d, g, b} in
D × G × B that are plausible at P . For each such triplet we evaluate a window Wp(d, g, b)
that contains P and all other connected pixels plausible for {d, g, b}. The largest window is
used for the estimate {d̂, ĝ, b̂} for P . Note that this procedure evaluates disparity, gain, and
bias simultaneously. Even though our direct interest is only in disparity, we automatically
estimate gain and bias at the same time.

This solution has an obvious limitation in terms of efficiency. An implementation of this
method would use finite sets G and B. It is reasonable to discretize B to integer values in
some limited range. However, it is unclear how to construct a finite set G. One can easily
specify some bounded interval (1 − α, 1 + α) as a range for possible gains. Yet discretizing
this interval will introduce errors unless the discretization is fine, and thus G is large. We
have to construct windows Wp(d, g, b) for all (d, g, b) ∈ D × G × B instead of constructing
windows Wp(d) for all d ∈ D. The running time thus increases by a factor of |G| · |B|, which
could be substantial.

4.3.2 Variable gain and bias per window

There is another way to handle gain and bias within our framework that overcomes this
limitation. Instead of assuming that gain and bias are constant within a window, we allow
them to vary. Our solution also allows gain and bias to take values in a continuous range,
while still running in O(mn) time.

First, let us generalize to continuous values of gain and bias. Consider the open intervals
G = (1 − α, 1 + α) and B = (−β, β), where α and β are fixed real numbers such that
0 < α < 1 and β > 0. Since G and B are continuous intervals the plausibility test becomes

∆P d,g,b < ε̃p (10)

where

ε̃p = φ−1


 q

|I| +
1 − q

|D| · 4αβ
·

∑
δ∈D

∫ +β

−β

∫ 1+α

1−α
φ(∆P δ,g,b) dg db


 .
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In section 4.3.1 we used the plausibility test to construct windows Wp(d, g, b) for each triple
{d, g, b} ∈ D × G × B. In this section we use (10) to construct a window Wp(d) for each
disparity d ∈ D.

The window Wp(d) is initialized at a pixel P if there is at least one value of (g, b) ∈ G×B
that makes test (10) work for P . If there is no such value, then Wp(d) is empty. Pixels are
then added to Wp(d) as follows. We call two neighboring pixels P1 and P2 connected for a
given disparity d if there is some common value of (g, b) ∈ G×B such that both P1 and P2
pass the plausibility test (10). That is,

∃(g, b) ∈ G × B :




∆P1d,g,b < ε̃p1

∆P2d,g,b < ε̃p2.
(11)

Given that the pixel P1 is already in Wp(d), its neigbour P2 is added to Wp(d) if these
pixels are connected for d. Pixels are added in this manner until Wp(d) is maximal. As in
the beginning of section 4, we consider Wp(d) for all disparities d, and then estimate d̂ for
pixel P by maximizing E(Wp(d)).

Note that the window construction procedure above is order independent. We would ob-
tain exactly the same window by starting at any point inside Wp(d) and by adding connected
pixels in any possible sequence. This also implies that if q ∈ Wp(d) then Wq(d) = Wp(d).
Thus, windows for all pixels p at a given disparity d can be evaluated efficiently in a single
pass over the image. Note also that a window Wp(d) may contain pairs of adjacent pixels
P1 and P2 that do not satisfy the test (11). This could happen if P2 is connected to P1
through a sequence of other pixels in Wp(d). Since we now create the windows by the use of
connections, it is natural to also evaluate them by counting the number of connections.

The method of this section does not estimate the parameters g and b. The fact that
test (11) works for connected pixels in some window Wp(d) does not imply that there is one
common value of gain and bias {g, b} that satisfies equation (10) for all pixels in Wp(d) at
the same time. It is easy to construct an example where a pixel P is connected to both its
left neighbor Pl and its right neighbor Pr, but where there are no common values of gain
and bias for Pl and Pr. For instance, the common values of gain and bias for the pair {P, Pl}
might be concentrated around (1 − α, −β), while for {P, Pr} they might concentrate around
(1 + α, β). Note, however, that the larger the number of connections between the pixels
in some window the more likely it is that the values of gain and bias will vary smoothly
between the neighboring pixels. Since our evaluation method prefers windows with lots of
connections, our method encourages gain and bias to vary smoothly between image pixels.

Test (11) can be implemented quite efficiently. Using some simple geometric arguments,
it can be re-written as

∃g :




|(ip1 − ip2) − g · (ip1+d − ip2+d)| < ε̃p1 + ε̃p2

|ip1 − g · ip1+d| < β + ε̃p1

|ip2 − g · ip2+d| < β + ε̃p2

|1 − g| < α.

(12)

The four inequalities in (12) can be rewritten as intervals li < g < ui for i ∈ {1, 2, 3, 4}.
Therefore, to implement test (12) we need to check if four subintervals of the real line have a
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non-empty intersection. This can be easily done by comparing the end points of the intervals.
All we need to check is max{l1, l2, l3, l4} ≤ min{u1, u2, u3, u4}. This test requires at most
seven comparison operations.

This method removes the limitations of section 4.3.1. We no longer require the sets G
and B to be finite, and thus avoid the discretization problem. In addition, the running time
no longer depends on G and B. We still need to compute ε̃p, which takes O(m) numerical
integrations at each pixel. The time per integration does not depend on m or n, and can be
reasonably assumed constant. In this case, the running time of this algorithm is O(mn) for
sets G and B of arbitrary size. In practice, the efficiency of this algorithm is comparable to
the basic algorithm described in the beginning of section 4 which does not handle gain or
bias.

5 Experimental results

In this section we examine results from our methods on both synthetic and real imagery,
including cases with ground truth. We also provide comparisons against the following
well-known methods: Kanade and Okotumi’s adaptive window scheme [14]; MLMHV [5];
Bandpass-filtered L2 correlation [18]; and normalized correlation [10]. We used published
parameter settings where available, and otherwise empirically determined the parameters
that gave the best results. In section 5.3 we discuss the sensitivity of our method to various
parameter settings. Our method determines whether or not a pixel is occluded, which most
of the above algorithms do not (MLMHV is the exception). We displayed this by mapping
occluded pixels onto the darkest disparity, both for our method and for MLMHV.

5.1 Synthetic imagery

Figure 4 shows a synthetic image with a block at one disparity against a background at
another disparity. Note the difficulties that normalized correlation has near the discontinu-
ities and at the corners. Figure 5 shows a synthetic image of a sine wave. Fixed window
techniques tend to cause thin objects like this one to expand.

Figure 6 demonstrates that our method can obtain the correct solution in areas without
texture. In this pair, the white square has a uniform intensity, which makes its motion
ambiguous. Fixed window approaches cannot obtain the correct answer in this textureless
area. Our method estimates disparity in this textureless region by constructing a window
which contains the border of the square. We obtain the correct solution at almost all pixels,
including every pixel in the textureless region. This phenomenon is extremely important in
practice, since many images contain regions with little texture.

5.2 Real imagery

The performance of various methods on real images shown in figures 8, 9 and 10. On these
examples, rectangular window methods (i.e., normalized correlation, bandpass-filtered L2

correlation, and Kanade and Okotumi’s algorithm) have significant problems. The bound-
aries of objects are poorly localized, and large objects that should be at the same disparity
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Left image Normalized correlation Our results

Figure 4: Random dot stereogram of a block. Normalized correlation rounds the corners and
is inaccurate near the discontinuities.

Left image Normalized correlation Our results

Figure 5: The background is stationary, and the sine wave shifts by a few pixels.

Left image Right image

Figure 6: An example with a textureless area. The background is stationary. Our method
generates the correct answer at almost all pixels, including every pixel in the textureless
region.
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Method Running time (seconds) Errors
MLMHV [5] 1.4 25%
Kanade [14] ∼ 3600 27%
Normalized correlation 3 27%
Bandpass-filtered L2 [18] 4 25%
Our method (§4.3.1) 140 20%
Our method (§4.3.2) 4 23%

Figure 7: Performance of various methods on the imagery shown in figure 8(a).

(such as a fronto-parallel wall) instead exhibit several disparities. MLMHV performs well,
but suffers from a characteristic horizontal “streaking”, due to the algorithm’s scanline-
oriented nature. Our methods generally perform well, although there are cases where we
are too aggressive in propagating information from textured areas into nearby low-textured
areas.

5.2.1 Ground truth

We obtained an image pair from the University of Tsukuba Multiview Image Database for
which ground truth is known at every pixel. The image and the ground truth are shown in
figure 8, along with the results from various methods. Note that the handle and cord of the
lamp can be seen fairly clearly in figures 8(c), (d) and (f), but not in the other cases. The
head statue is similarly well-localized in those three figures. In figure (f), there is significant
streaking of disparities, particularly at the left edges of objects.

The dark area at the bottom of the image to the right of the statue has almost no
texture, and all the algorithms perform badly there. However, our performance in that area
is worse than the other methods, since we propagate information from the nearby table. The
background of the image also has areas with little texture, but our method places almost
the entire background at the correct disparity.

Having ground truth allows a statistical analysis of algorithm performance. We have
calculated the number of correct answers that are obtained by various methods. The ground
truth is dense and complete, and thus determines the locations of the occlusions in the
image. Our method and MLMHV detect occlusions explicitly, while the other methods do
not. For simplicity, we discard the pixels which are occluded according to the ground truth.
This means that we overlook false negatives from algorithms that detect occlusions; the
advantage is that we can compare against algorithms that do not detect occlusions. The
error percentage for algorithms that do not detect occlusions is simply the percentage of
pixels that disagree with the ground truth. The error percentage for algorithms that detect
occlusions also includes false positives (i.e., pixels which are not occluded in the ground
truth, but which these algorithms claim are occluded).

The results are shown in figure 7, along with the running times. All methods were bench-
marked on a 200 MHz Pentium Pro processor, with two exceptions. MLMHV was run for
us by its authors on a 194 MHz SGI R10000. We obtained source code for Kanade’s method
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from his web site, and ran it on a 50 MHz SuperSparc. We implemented normalized correla-
tion and bandpass-filtered L2 ourselves, and the implementations are reasonably optimized
(for example they exploit dynamic programming).

5.2.2 Other imagery

Figures 9 and 10 show the results of several different methods on real data. Unfortunately,
ground truth is not available for these images. However, it is possible to look for certain
details which should be present in the results from each image, on a case by case basis. The
digital imagery shown below, including both the original images and the results from various
algorithms, can be accessed from http://www.cs.cornell.edu/home/rdz/adaptive.

Figure 9(a) shows the shrub image from CMU. The very top of the signpole is well-
localized in figures (b), (c) and (d), but is too large in figures (e) and (f). The same
phenomenon occurs with the sign itself. In (d), there is significant streaking. The background
wall is also interesting. Our method places the entire wall at a single disparity. It is possible
that the right side of the wall is slightly closer, since the other methods (to one degree
or another) assign it a different disparity. This may be a case where our method is too
aggressive at constructing a single large region from the data. However, the other methods
give very noisy results on the wall, with numerous small regions whose disparities are clearly
wrong.

Figure 10(a) shows a tree image from SRI. The gaps between branches of the foreground
tree are well-defined in figures (b), (c) and (d), but are hard to distinguish in the other data.
Figure (d) shows some horizontal streaking, particularly along the foreground tree. The tree
stump appears too large in figures (e) and (f).

5.3 Parameter values

Our method, as well as the methods we compared against, take various parameters. On the
data shown above, we set these values empirically. The noise model f is the most important
parameter for our method.4 Different cameras and digitizers introduce different amounts of
noise, so there is no single solution for the best noise model. Ideally, f might be estimated
on a per-camera basis, for example by analyzing consecutive images in a static scene. In
practice, we have assumed gaussian noise, and selected σ empirically.

However, our method appears to be fairly robust against different values of σ. We have
measured the accuracy of our algorithm on the image for which we have ground truth, as a
function of σ. The accuracy is almost constant for σ between 1 and 2, which is the range we
have used throughout.

4The percentage of expected occlusions q is the other parameter for our basic method, but its value has
minimal effects on the output within broad ranges (such as 2% to 8%). For the extensions described in
section 4.3, the maximum allowed gain α and bias β are also required.
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(a) Scene (b) Ground truth

(c) Our results (§4.3.2) (d) Our results (§4.3.1)

(e) Kanade (f) MLMHV

(g) Bandpass L2 (h) Normalized correlation

Figure 8: Ground truth imagery
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(a) Original image (b) Our method (§4.3.1) (c) Our method (§4.3.2)

d) MLMHV (e) Kanade (f) Normalized correlation

Figure 9: Shrub results

(a) Original image (b) Our method (§4.3.1) (c) Our method (§4.3.2)

d) MLMHV (e) Kanade (f) Normalized correlation

Figure 10: The SRI tree sequence
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6 Extensions

The work described in this paper has numerous natural extensions. Our current definition of
plausibility can be extended in various ways. For example, one might call pixel P plausible
for disparity d if condition (8) (or analogous conditions from section 4.3) is satisfied for a
specified percentage of pixels in near P .5 This might add more robustness to connected
components and reduce the number of errors due to discretization at object boundaries.

More robust schemes for growing connected components should also be considered. It is
well known that connected components is sensitive to noise. Connected components can be
made more robust if we did not allow thin connections within one component and instead
broke such components into smaller and better connected pieces. For example, we could
require that components be k-connected, for k > 1, instead of merely connected. Such a
condition would eliminate many small windows. One might also use information from a
single image (such as intensity edges) to stop connected components from crossing certain
boundaries.

Another extension is to consider alternate criteria for selecting windows when estimating
disparity or intensity at a pixel P . Throughout this paper we selected d̂p (or ı̂p) based
on the window Wp(d) (or Wp(i)) of the largest size, defined in terms of the number of
pixels or the number of connections. Other criteria can also be used, such as the window’s
shape. Contextual information might also play a role. For example, many stereo images
contain ground planes, which are horizontally extended (the tree image in figure 10 is a good
example). Our method could be biased to select such windows over slightly larger windows
whose shape has a low prior probability.

The algorithms suggested in this paper are to a large extent local. More specifically, the
estimates of disparity or intensity at different pixels P are selected independently based on
the information contained in the windows Wp(d) or Wp(i) respectively. Even though these
windows are constructed to include as many relevant pixels as possible, the independence
between decisions we make at each pixel demonstrates that our algorithm is local.

6.1 Relationship with Markov Random Fields

It is also possible to view our work as a local optimization method for minimizing a global
energy function that results from a specific Markov Random Field. In the MRF framework,
early vision problems involve finding the labeling of an image with the maximum a posteriori
probability. The prior captures the spatial smoothness of the desired result and the likelihood
models the noise. Under a Potts model prior and a uniform noise model, the resulting energy
function is heuristically minimized by the algorithms we have proposed.

The Potts model [20] is perhaps the simplest interesting prior because it permits discon-
tinuities. Under the Potts model, the prior probability of an image labeling depends upon
the number of disconnections (i.e., the number of adjacent pairs of pixels that are assigned
different labels).6 The more disconnections there are, the lower the prior probability. Now

5For example, the neighborhood of P can be defined as all pixels within a certain distance to P . Note
that the algorithms described in this paper use neigborhoods containing only the pixel P itself.

6For a binary image, the Potts model becomes the well-known Ising model. Note that the maximum a
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suppose that the noise model has a uniform distribution within some fixed range ±ε. Thus,
for the image restoration problem, if the observed intensity is ip, then the true intensity lies
in the interval ip ± ε. Under the uniform noise model, every pixel must be assigned a label in
this interval. Image labelings where each pixel has this property are defined to be plausible.
Note that a labeling which is not plausible has zero posterior probability.

The energy function that results from a Potts model under uniform noise is quite simple.
Only plausible image labelings are considered; among these labelings, the energy is the
number of disconnections. The method we have described in this paper obviously results in
a plausible labeling, and locally attempts to minimize the number of disconnections.

The main justification for local optimization is, of course, efficiency. In general, global op-
timization methods are extremely slow for non-convex objective functions in high-dimensional
spaces. However, for the Potts model, we have recently developed a fast global optimization
method, which we describe in [4].

7 Conclusions

We have presented a new approach to low-level problems in computer vision that permits
windows of arbitrary shape. The running time is linear, and comparable in practice to
fixed window methods. Our method gives good performance near discontinuities, and also
propagates information from textured regions into nearby regions without texture. As a
consequence, our variable window scheme appears to outperform fixed window methods on
both synthetic and real imagery.
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