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Global Optimization for Shape Fitting

Victor Lempitsky Yuri Boykov

Abstract

This work proposes a global optimization framework for
3D shape reconstruction from noisy sparse 3D measure-
ments frequently encountered in range scanning, sparse
feature-based stereo, and shape-from-X. Firstly, we suggest *
a novel surface-fitting energy for sparse or incomplete noisy
data. Our flux-based functional maximizes the number of
data points contained by a surface while allowing for some
measurement errors. Combined with regularization, this ge-
ometric functional significantly improves data alignment.

We also show that typical local or “banded” optimiza-
tion techniques do not recover from initialization errors
while standard global optimization methods are prohibitive
due to sheer size of 3D grids required for high-resolution <
surface reconstruction. To overcome these limitations, we ‘ : il
propose a first graph-cut algorithm that guarantees global Figure 1. An example of input data for our method showing two
optimality on huge 3D grids while working on automati- (out of 10) range scans registered in 3D. Points in each scan come
cally adjusted small sub-graph. Our global optima surface- with weak orientation estimates (blue and green arrows) sufficient
fitting results for noisy point clouds or sparse/incomplete for our method. Typical noise and outliers are shown in a close-up

multi-view disparity maps are robust to noise, large missing (from a different and more complete set of 112 scans). We also
parts, and varying sampling density. show one image of the scanned object (not a part of our method’s
input). This data is courtesy of the Stanford 3D repository.

1. Introduction

Fig.12. In practice, we produce good results even using di-
sion and graphics. The main two contributions of this work rections towards the sensor/camera which are often known

are as follows. First, we address the surface fitting problemfor data pomt.s (blug orgreen arrow; in Rp.
via a novel data-fit functional directly derived from qual-  Our data-fit functional does not bias a reconstructed sur-
ity of feature-matching at data points. Second, we proposef@ce to any particular shape but it can be combined with
a new memory-efficient global optima algorithm for high- appr_opnate shape priors (smoothness/regularization), volu-
resolution surface fitting to sparse data that alleviates prob-Metric occupancy data, or other terms. For example, our
lems of standard local minima and narrow-band methods. discrete data fit energy can be combined with a separate
Our novel surface fitting functional directly enforces ge- photoconsi;tency term for constraining the surface in fea-
ometric proximity to data points. Intuitively, it counts data tureless regions.
points contained by a surface while allowing for localiza-  In contrast to many earlier regularization methods for
tion errors. Data points may have different weights re- fitting a surface to sparse data, global optimization of our
flecting confidence level that a point is not an outlier. We €ost functional does not result in a trivial (empty) solution.
also assume that each data point comes with some estimatéhus, our energy is well suited for global minima algo-
of surface orientation - a vector that we use to softly con- fithms which are typically more robust in practice. Unlike
strain (outward) normal of a surface that fits the point. Un- Standard local or banded optimization methods, our recon-
like many previous methods using estimated surface nor-struction results do not depend on initial solution.
mals, our approach requires orientations only for observed Global optimization methods for surfaces, e.g. graph-
(sparse) data points and is robust to orientation errors, seeut [2], typically require a lot of memory for high resolu-

Surface fitting to sparse points is widely studied in vi-
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a) Data term b) Initial shape c¢) Local optimization d) Global optimization €) Subgraph (in white)
Figure 2. Global vs. local/banded optimization in 2D shape reconstruction. We minimize a functional similpotqi(l). The data
term of the energy is based on pixels’ potentials (a): dark — negative, bright — positive, gray — zero. The regularization term is geometric
length of the shape’s boundary. Image (c) shows results of local optimization (level sets) from initial solution (b). Global optimization
(graph-cut on a full-size 2D grid) is in (d). Our method detects such global minima using a small subgraph (e) automatically grown from a
narrow-band around the same initial shape (b).

tion volumes. Standard hierarchical or narrow band tech
nigues do not guarantee global minima and generally be
have as local optimization methods, see Eig).In contrast,
our new memory-efficient graph-cut algorithm guarantees §
global minima. It can compute global minima surfaces at
fairly high resolutions on regular PCs. In the context of
surface fitting problem, our technique computes regularize:
watertight surfaces demonstrating good alignment to data
points without qver'f'ttmg to Ou“_'ers' Our mem‘?ry efficient unoriented pointsi[€] (middlg: incorrect estimate of initial shape
graph-cut algorithm may potentially be generalized to other yay jead to significant reconstruction erroGlobal graph-cut

Figure 3. A cloud of data pointdeft). Banded graph-cutfrom

optimization problems in computer vision. approach proposed in this workight) avoids local minima prob-
lem. We also show that even rough estimates of data points’ ori-
1.1. Global vs. local optimization of surfaces entation may significantly improve alignment with the data.

There are many existing techniques for fitting 3D shapes
to discrete data points. This paper follows a minimal surface ous surface functionals using regular N-neighborhood grids
(regularization) approach where output optimizes some en-with specific edge weights. The optimal surface is implic-
ergy functional encoding available data and prior assump-itly represented by the minimum cut. As grid resolution and
tions about the shape. We choose to work with geometri- connectivity increase, this discrete approximation becomes
cally motivated functionals that typically include terms like more accurate. In contrast to local variational methods,
(non-Euclidean) surface area, flux, and regional bias (volu-graph-cut approach yields a global minimum (Fig@rm
metric potentials). Minimal surface methods typically yield and it is not sensitive to initialization. On the negative side,
consistent and predictable watertight surfaces, run reasoneurrent min cut algorithms require a lot of memory when
ably fast, and, most importantly, are robust to noise, out- used on high resolution grids.
liers, and large areas of missing data. The objective of this paper is to develop a global op-

Commonly used geometric functionals are non-convex timization framework for 3D shape fitting problems. To
and may have many local extrema. Consequently, the par-develop this framework, we first propose a novel continu-
ticular choice of optimization method is important. One ous geometric functional for surface-to-data fit (see Hec.
popular surface optimization approach is based on varia-Our flux-based functional is amenable to global (e.g. graph-
tional methods using deformable meshes or implicit level cut) or local (e.g. level-set) optimization methods. Essen-
set representation of the shape. However, variational meth-ially, we maximize the number of points that lie on a sur-
ods find local minima which may depend on initialization face constrained by a shape prior. Yet, local optimization of
and on numerical implementation details (Figdeec). our functional is sensitive to initialization (Figh,c) while

Recently it was demonstrated that many continuous ge-global optima solution is consistent (Fig).
ometric functionals can be optimized via combinatorial ~ We also study the problem of computing globally opti-
graph-cut algorithms on grids?2[ 19. This approach is  mal cuts (surfaces) on high resolution volumes while tak-
motivated by integral geometry. It approximates continu- ing advantage of high concentration of data points in a very
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camera

small part of the volume. We would like to restrict com- camera
B

putations to a subgraph (e.g. narrow bang),some part A
of the grid surrounding the actual data points. Yet, exist-
ing narrow-band strategie&], 16] do not guarantee global
optimality making the result depend on the actual shape of
the narrow band and on initial guess. Essentially, previ-
ous narrow-band techniques converted graph-cut into a lo-
cal optimizer similar to level-sets or other variational meth-
ods causing local minima problems, e.g Bigniddle).

In order to retain global optimality, in Sectiohl we
prove a lemma that relates a minimum cut on a subgraph
to the minimum cut on the complete graph. Based on this
lemma, we propose a memory efficient graph-cut algorithm
that automatically adjusts the shape of the subgraph until
its minimum cut is guaranteed to coincide with the mini-
mum cut in the whole volume. This allows computation of a
globally optimal minimum cut using a subgraph (Fig,e).

Our surface fitting experiments showed that our algorithm
can compute globally optimal cuts using an order of mag-
nitude less memory than what normally would be required
for a full resolution graph. These memory savings resulted
in a leap forward in resolution at which globally optimal
surface can be computed significantly increasing accuracy
of shapes generated by local optimization (seeZFigr by Figure 4. Phptoconsistency VS. featu.re-based .stereo. .Three (yel-
standard narrow-band methods (see Big. low) data points are accurately localized by triangulation of the

Experiments show that our shape fitting method recon- correspor_ldlng image features (_|nten5|ty edges). Shaded areas
. . . . show regions of good photoconsistency between green, blue, and
structs high-resolution watertight surfaces in presence of

. . L . " “"red pixels of cameras A and B. Minimal photo-inconsistency sur-
noise, outliers, large missing parts, and varying sampling tace may be far from the feature points. The problem is the

density. Global optimality of our surface fitting solutions  “shrinking bias” typical for regularization methods and the fact
implies no initialization issues, better robustness, consis-that all points in the shaded area have the same cost even though

tency, and possibly wider scope of applications. three feature points are the most useful in finding the true sur-
face position. In practice, the problem could be even worse be-
1.2. Surface fitting for image-based data cause shaded regions may not even “touch” at feature points. In-

deed, corresponding pixels near intensity edges may be photo-
In many applications surface measurements (sparse 30nconsistent due to sampling issues and partial voluming effects
data points) come from triangulation of corresponding fea- causing some erosion of high photoconsistency (shaded) regions.
tures in calibrated image sensing (passive light) and/or im-
age projecting (active light) devices. Since our new surface-
to-data fit functional can be directly related to the quality of cision'. Yet, outliers could be a problem. Also, many ap-
matching between image features, it is possible to place oumplications need continuous shapes. Typically, continuous
surface fitting method in the context of existing approaches surfaces are fit to sparse data points in a separate step where
to image-based shape reconstruction. some shape priors are introduced in order to deal with out-
Many image-based reconstruction methods generatdiers, noise, and large gaps.
continuous 3D shapes based on surface photoconsistency. Our new surface fitting method optimizes an energy
Yet, photoconsistency does not imply accuracy for sur- combining two terms: a shape prior (regularization) and a
face reconstruction in textureless regions where lack of data-fit cost functional related to the quality of the matching
features prevents accurate triangulation (seedkiglypi- between image features. Unlike many existing approaches
cally, reconstruction of textureless parts is based on assumpto feature-based stereo, we combine feature matching costs
tions about the surface, e.g. smoothness/regularity in a deand prior shape (regularization) constraints in a single op-
formable model approach or maximal size in space carving.timization step. Thus, our approach can be directly com-
An alternative standard approach to image-based shapgared to photoconsistency-based regularization methods for
reconstruction is to generate sparse 3D points by matchingstereo combining image data and a shape prior in one en-
discriminant features. Typically, feature-based sparse stereo
methods are fast and localize surface points with good pre- !Laser scanning can be seen as an example of feature-based stereo.
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ergy. In contrast to standard photoconsistency function-on good initialization. Also, if the shape undertakes sig-
als, however, our flux-based data-fit cost at each point isnificant changes during gradient descent evolution, mesh-
not bounded below by zero (indicating “consistency”) and based techniques have to use different heuristics for han-
points with discriminant features can have large negative dling topological changes. Mesh quality control is another
values actively attracting minimal surfaces. significant practical issue.

Fundamentally, both photoconsistency-based and dis-  Many methods for surface fitting avoid mesh-related nu-
crete data approaches to 3D surface reconstruction rely onmerical problems by representing surfaces implicitly. An
two similar basic factors: the accuracy comes from rela- earlier group of such methods, including widely cited work
tively sparse features such as intensity edges, seé,/6ig. by Curless and Levoyi[], used level-set functions to repre-
silhouette edges.[] while the continuity comes from ex-  sent surfaces but did not employ any surface regularization
plicit or implicit shape priors. Yet, as illustrated in Fg.  functionals. To avoid any confusion with the widely known
optimal photoconsistency of a surface may contradict ge-|evel-setgechnique of Osher and Sethiaiv], it should be
ometric alignment with feature points which are the main noted that {0] and other similar methods do not compute
indicators of the true surface position. Thus, directly en- the gradient descent evolution of a surface. They use data
forcing geometric proximity of a surface to 3D data points points only to estimate some dense “interior” function in
may improve accuracy. Another advantage of using discrete3p space and reconstruct a continuous shape as its isosur-
measurements could be efficiency gained from sparsity.  face (level-set). For example, the VRIP algorithm of Cur-

Computation of depth (disparity) can be seen as a 1Dless and Levoy [(] computes a weighted sum of signed
version of a more generaptical flow (2D motion) prob-  distance functions of individual range scans and thresholds
lem. Interestingly, the basic problem illustrated in Fig. it (at level zero) to recover a continuous surface. Another
connects to some known properties of standard optical flowgroup of methodse(g [7]) compute an interior function as
methods. As widely knownl] €], sparse (Lucas-Kanade) a combination of radial-basis functions. The Poisson sur-
techniques that focus on points with sufficiently discrim- face reconstruction algorithm [] considers oriented points
inant features can be more accurate and robust to noisexs samples of gradients of the interior (signed distance map)
than dense (Horn-Schunck) techniques that enforce colorfunction and reconstructs it using the Poisson equation.
consistency and regularization. Similarly to Fig. the Any surface fitting method that lacks geometrically mo-
Horn-Schunck approach can oversmooth important datayjyateqd regularization is prone to problems when the data
points because color-consistency (or optical flow constrain) ;ontains large gaps and outliers. Some of these methods are
does not distinguish points with reliable measurements 454 sensitive to the accuracy of point orientations estimates

from color-consistent points in textureless parts. Ideally, 5,4 varying sampling density. To counteract such problems,
dense optical flows should be constrained to geometrically 5yqther group of algorithms (e.g.2 1) combine

] 1

fit motion detected at reliable data points. Unfortunately, jmpjicit surface representation with regularization via the
many standard techniques for dense optical flows ('nCIUd'WeII-knownIevel-setstechnique of Osher and Sethiai,

ing [6]) do not use such geometric constraints. This variational method can compute the gradient descent
N evolution of an implicitly represented surface with respect
2. Related work on surface fitting to a given cost functional. Level-sets cope seamlessly with

topological changes and avoid re-meshing issues. Yet, sur-
ace fitting methods based on level-sets converge to a local
minimum of the corresponding functionals. Thus, they de-

There is a large amount of work on fitting continu-
ous shapes to 3D sparse/incomplete data and we can re
_ere_ncefonly 2 frgctlonhogemstm% DUbI'Cat'%nS' Thg_ ma- pend on proper initialization. Some regularization function-
Jority of standard methods can be grouped according 10 s 1 grface fitting are reviewed in S&c2.
their approach to numerical representation of surfaces (see .

Our work uses a different approach where surfaces are

Sec2.l). Due to commonly present noise, outliers, and ted bi fitioni it cut di i
large missing parts, energy-based methods are particularl)}re.presen e€d as binary partitionings (s/t cu .S) on discrete
grids [2, 5]. This implicit representation technique is based

appropriate for robust surface fitting. In S2@.we review . L
existing regularization-based surface fitting techniques and®" integral geometry] and a_IIowg global o_pFlmlzanon .Of
the surface functionals that they use. a Iarge class of surface _funcuonans[wa efficient combi-
natorial graph-cut algorithms. Robust global graph-cut al-
gorithms have already demonstrated a strong potential for
many problems in computer vision, but they have not been
First, there is a group of methods using explicit repre- applied to surface fitting yet. One exception is a very re-
sentation of surfaces via triangle mesh [1]. This ap- cent method of Hornung and Kobbeit€], but they com-
proach allows optimization of geometrically-motivated en- pute an optimal surface in a fixed narrow band (a crust) and
ergies using gradient descent but it can be highly dependenthe shape of this crust directly affects the optimized energy.

2.1. Explicit and implicit surface representation
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Similarly to variational methods, their results depend on the variational (level-set) approaches will converge to a local
initialization, i.e. on the particular shape of the constructed minima of this functional: a surface composed of facets
crust. Using banded (non-global) optimization may lead to from Delaunay triangulation for a given sparse set of points.
gross errors in reconstruction, while discarding orientation The particular local solution will depend strongly on good
information may lead to oversmoothing (Figuse Our initialization.

graph-cut based algorithm _is a _first surface fitting method Hornung and Kobbelt]¢] apply graph-cut surface opti-
that guarantees global optima in the whole volume. We ization ] to a sparse data fitting functional very similar
also designed a novel geometric surface-to-data fit func-y, (7). However, functionald) is not appropriate for global
tional suited for global optimization. optimization since its global minima is a trivial (null) sur-
face. Thus, [6] compute their solution in a (fixed) narrow
band reducing graph-cut framework to local optimization

Regardless of numerical approach to surface represenessentially equivalent to variational approacha][ Con-
tation, different regularization-based surface fitting tech- nection between narrow-band graph-cut methods and varia-
niques can be compared by the energy they use in ordetional optimization (e.g. level-sets) was shown4h [

to cope with noise, outliers, and large gaps. Since we use savadjiev, Ferrie, and Siddig? ] formulate surface fit-
a geometric approach, we mainly concentrate on geometriging as a problem of estimating a dense vector figlg}
regularization functionals used for surface flttlng inthe paSt. of surface normals from sparse data pointsl Then, a contin-

To merge incomplete range scans obtained from multiple ous surface can be recovered from a dense field by
view points Whitaker 28] uses functional optimizing aflux functional

E(S) = D(v)dv ds 1
( ) /interior(S) ( ) +/S ( ) E(S) = /<’Us,7’ls> -ds (3)
S

whereD(v) = >, D;(v) is a potential function based on a
combination of signed distance maps of independent scangyvheren, is a surface normal. To estimate a dense vec-
obtained from multiple view points. Functidb(v) is very  tor field {v,}, [27] finds a local surface patch of the least
similar to the interior function used by Curless and Levoy square fit at each sparse data point and use regularization
[10]. Both [28] and [L(] assume that eachth scanis dense  framework to propagate local patch information around. In
which allows the corresponding signed distance function to particular, they useariational relaxationon a discrete 3D
be defined in a straightforward fashion. In fact, minimizing grid to enforce curvature consistency over local (quadric)
the first term in {) is equivalent to extracting a zero-level patch models. Once local patch models are estimated, nor-
isosurface ofD(v) which is exactly the algorithm ini[].  mal vectors{v, } are determined with-180 degree ambi-
The main contribution of{c] was to combine the data-fit qgyity due to lack of global surface orientation in the for-
energy as in (] with the second regularization term ih)(  mylation of P5]. Thus, P5] cannot recover a continuous
thereby improving robustness to outliers and noise. surface by optimizing flux3) with respect to the obtained
Zhao, Osher, and Fedkiw’{] proposed a different ;1 They propose some heuristic to overcome the ambi-
regularization-based surface fitting functional applicable to gyity of their vector field orientation but it causes geometric

2.2. Geometric surface fitting functionals

an arbitrarily sparse set of points artifacts (e.g. “thickness™5]) and reconstruction errors.
. We believe that it is possible to resolve the ambiguity of
E(S) = /SdP(S) rds, l<mn<oo @) an estimated dense vector figld, } in [25] by enforcing

global orientation consistency. At each grid ngdene can
wheredp(s) is a distance from poirg on surfaceS to the select one of two possible vectats, in a spatially consis-
nearest data point in sét. Functiondp(-) is an unsigned  tent way according to a binary MRF formulation with pair-
distance map that is well defined for any set of poiRts =~ wise smoothness between neighboring grid points. Such
Thus, functional ) can be applied to a wider class of sur- MRFs posterior energies (possibly super-modular) can be
face fitting problems thanlj as the set of point$> can optimized using graph-cut, QPBO methodx]]] and/or
combine arbitrarily sparse data from different views and no other powerful combinatorial optimization techniques. Yet,
estimates of surface orientation are required. in this work we study a different approach to surface fit-

Functional @) combines surface-to-data proximity with ting. In contrast tof5], we do not want to brake the surface

smoothing/regularization into one term.  Similarly to fitting problem into two (artificially?) separated steps: com-
geodesic active contours][ functional ) can be seen as  puting a dense fieldlv, } of normals by propagating surface
the area of surfacd under a Riemannian metritdefined patches estimated in sparce data points and then computing
by the data. As discussed ifi9], optimization of @) via a surface that fits this dense field of normals.



V. Lempitsky and Y. Boykov, University of Western Ontario, CS Tech.Rep. # 679, ISBN: 978-0-7714-2592-9, Feb. 7, 2007 p.6

2.3. Our geometric approach vs. prior art target souree target source
. (o
Our insight is that flux-based data fit functionals lil& ( neg) JL (o) : JL .
do not have to rely on dense and accurate estimates of sur- /" ] !: L /
face normalg{v, }. Unlike [25], we skip attempts to accu- f =f'(a,)

rately estimate a dense field of surface normals and use only 1oy
some weak estimates of global surface orientation at sparse 8; = g‘a(ﬂs) :
data pointg; € P. We assume a sparse vector field R '

{vil pi € P}

where each vector; softly constrains true surface normal
n; at data poinf;. In particular, we expect large positive
values of thecosine of the angle between vectorsandn;.
Yet, we show that even fairly coarse orientation estimates
at data pointg; € P work well in practice. For example,
the experimental results in this paper use the direction from
a data poinp; to the corresponding sen$oiWe also note
thatv; does not have to be a unit vector and its length may
indicate confidence of data poipt and/or its orientation. Figure 5. Data points from active or passive reconstruction tech-
Before computing flux ), we convert our sparse vec- hiques €.g range scanning or feature-based stereo) are not as dis-
tor field {v;| p; € P} to a semi-dense field by “blurring”  crete as they may appear. For example itttedata point from a
each vectow; in a small neighborhood of point; using a laser scanner (a)_ corresponds to_noisy non-deterministic measure-
Gaussian (or other) kernel corresponding to the measure—mem,s of an |IIum|nate’d pgtch which could b’e smaller or larger de-
ment error or uncertainty of data poipt, see Fig5b. In pending on the beam’s width and the patch’s orientation. In laser

. . . scanning, “source” imagé’(«) is a probability of emitting a pho-
Section3.1 we show that flux with respect to such semi- ton in directiona and “sensor’ image’ (3) measuresadianceof

dense vector field can be directly related to the quality Of g ace points viewed at angle Statistically motivated function-
feature matching. Despite blurring, such semi-dense vectorys Jike () suggest that sparse/discrete surface measurements can
fields may still have large gaps due to data sparsity. Notepe represented via flux of continuous vector fields (b).

that our flux based data-fit functional is linear w.r.t. combi-

nations of multiple data points (or scans).

In contrast to 5], we combine flux of a semi-dense novel geometrically motivated surface-to-data fit functional
field of “rough surface normals” with regularization (or (Sec3.1) and combine it with surface regularization or other
shape priof) in a single geometric functional and com- generic forms of shape prior (Sez.2).
pute its global minima. The regularization term propagates
information and resolves ambiguities while flux enforces 3.1. Quiality of Fit to Data
alignment with the observed data points and counteracts ] ] . .
the “shrinking bias” of standard regularization (length/area)  'deally, if all discrete data points have absolute preci-
functionals. It is known that combining flux with regular- Sion then the quality of a surface fit can be measured by

ization allows reconstruction of elongated structures, nar- the number of data points that lie on it. Reconstruction of
row protrusions, or other fine surface details,[ . a continuous/dense surface would require imposing a shape

prior (e.g regularization) even for perfect discrete data but
this factor is separate from the quality of fit to data.

In practice, it is well known that even range scanning

Discrete measurements are common in range scanningmeasurements are not exact, not to mention accuracy of
feature-based sparse stereo or shape-from-X. Dense but infeature-based sparse stereo. How should the quality of a
complete datacan also be seen as a collection of discrete fit be measured in the presence of noisy data? In order to
data points. In all cases, data points come with some meaclarify this question it is very instructional to analyze the
surement errors or other forms of uncertainty. We derive auncertainty of a single data point in laser scanning which is

2if sparse data points; € P come with absolutely no surface orien- often considered to be the most accurate approach to surface
tation information, a sparse vector field can be obtained by locally fitting reconstruction. Our basic analysis can be extended to other
plane patches into pointg € P and by removingt-180 orientationambi-  active or passive light acquisition methods and laser scan-

guity via global consistency optimization (as suggested earlier) on a binary ning is chosen mainly as the simplest example iIIustrating
MRF with nearest k-neighbor or Delaunay-graph connectivity. . h
3E.g. elastic membrane (low area) or stiff membrane (low curvature). our main approach.

4As in multiview reconstruction from multiple disparity maps Consider the active light surface measurement process

3. Our energy formulation
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vE div(i’r;‘) -= where constant = [ f%(«)-da (total energy of the source)

is independent of. Large covariance indicates that two

gy O _ ==
div(l)  4fET— s - :
% : e iy -i-h" functions “vary together.” Note that functional§) @nd (7)
—_= __ are essentially the same except for an additional smooth-
ot == ness term in ). Since surface regularization is imposed
.'|.|' +'.ﬂ' ++-li-i— R . . . R
§ +_i_|-+ div(v,) in a separate shape-prior functional (see $&f.we will
concentrate oflux-based data fit functionals liké&,

Note that Lambertian assumption above is hon-essential
Figure 6. Maximization of flux through vector fielg = > | o for our main argument as long as there is a correlation be-
can be seen as maximization of the number of data points con-tween the irradiance on patel and the reflected light ra-
tained by a surface while allowing measurement uncertainty (a). diance in the direction to the sensor.

This is equivalent to maximizing divergence of vector fi¢ig } In case of multiple data points< i < N, our measure

i_nside surface interior (b). _Po?nts with non-zero (positive or nega- o syrface fitness sums functiona for all pointsi. This

tive) values of scalar functioiv (v, ) are indicated by or —. is analogous to counting the number of points contained by
S in the case of absolutely precise data. We obtain func-

shown in Figures (a). The amount of light energy reaching  tional
surface patclds from the source in a unit of time is maz <>— /(?75, fig) - ds (8)
S

ds - fi (v, ms) (4)

=i
v, }

(a) Flux (b) Divergence

o ) o which isflux for vector fieldo, = Zf.v:l 17; representing all
wheren, is surface normaly; gives direction to the source, (uncertain) data points, see Figufiéh) andé(a). Note that

and f¢ := fi(«,) for anglea, at which the source views Gauss-Ostrogradsky (a.kdivergencgtheorem
given points in space. The Lambertian assumption about

surfaceS implies thatradianceof points on patchis is the o o

same in all angular directions. Since image sensor measures /(Usvns> “ds = / div(vp) - dp. (9)
. . . S inter(S)

radiance of surface points then the total energy of light re-

flected by patclds in a unit of time is implies that 8) is equivalent to maximizing the integral of

) vector field'sdivergenceén the interior ofS, see Figuré(b).

We showed that flux-based functionals lik§ are well
whereg! := ¢%(3,) for angle3, at which the sensor ob- justified data-fit measures accounting for uncertainties or
serves poink in space. There is a connection betweén ( noise in the data points. This approach easily generalizes

ds - g

and 6): if surfacealbedois p thenr - gt = p - fi- (v;, 7). beyond laser scanning. In the majority of existing active
Functions ¢) and &) are defined for points on any surface  or passive light methods for acquiring discrete/sparse sur-
S. However, the linear relationship face measurements, eaclth data point naturally comes
' 4 with direction to the source; or even better estimate of
ge X fo-(Us,ns) VseS surface orientation. Moreover, instead of a single data point

p; most methods can report some distribution functigip)
describing probability thatth measurement corresponds to
a surface patch located at popntc R3. The specific form
of p;(-) depends on particularities of the specific acquisition
method. In many cases this distribution is a Gaussian with a
given mean (data point) and some covariance matrix spe-

g D cific to each technique. In general, we suggest flux-based
mar <— /Sgs fo (Vi ns) - ds (6) functional Q) as a generic surface-to-data fit quality mea-
sure where vector fiel¢lv, } representing data is

only holds if pointss and normals»; belong to the (un-
known) surface that reflected the light. It is natural to esti-
mate surfaces by maximizing some measure of similarity
between the two functions dfi

For example, maximization of the dot product

could be a reasonable approach to alighand 6). Alter-

natively, one can maximizeovariancé of (4) and 6) as o — Zp'(p) ) Vp € R3. (10)
functions (random variables) ovér = S with respect to S ’

Lebesgue measure

5 o _ In the special case of laser scanning we pag) = g, - f;

mar «— / gs - fr-(v;,n,) - ds — / c-gs-ds (7) which in most cases is a Gaussian whose variance depends
S o on the laser beam width. In feature-based sparse stereo,

5Covar(X,Y) = E(X = X)(Y - Y) = E(XY) - XY. variance depends on the size of the image features.
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edge, an exact construction is unknown. Yet, we propose
a simple heuristic for low curvature shapes. Note that each
observed data point; with estimated orientatiom; may
correspond to a small surface patch of certain &izerhe
smaller expected surface curvature is, the laryegets.
Then, thei-th data point support functiop;(p) that rep-
resents the likelyhood of poiptto be on a surface with ori-
entationy; (see (0)) can be widened by in the direction
orthogonal tav;. Thus, the low curvature prior may justify
the use of support functions;(p) wider than the span of
the measurement error model. Figufe) demonstrates the
effect of this ad-hoc low-curvature prior.

Figure 7. Surface fitting with different sampling density and priors.
a) Optimization of the data-fit term in combination with a mem-
brane prior produces consistent reconstruction for densely sam
pled points. b) The same fails when the sampling density is low.

¢) Widening the support of each point (ad-hoc “low curvature” 3.3. Occupancy data

prior) allows to obtain correct reconstruction. In many cases, there is some information about the
scene’'s geometry that comes not in the form of surface
3.2. Adding Shape Prior points but in the form oBpatial occupancy It can be de-

o ~ fined by a volumetric functioi®(p) where positive values
Inthe presence of large gaps and outliers in the data, im-indicate that poinp is likely to be inside the surface and
posing some shape prior is essential for surface reconstrucyice versa, while absolute values@fp) correspond to the

tion. One simple approach is to augment functioBaiyith certainty. Such occupancy data usually comes from line-
an area-based regularization terefatic membranerior)  of-sight informatiof or silhouette intersection and may be
giving the following minimization problem: easily incorporated into functional{). As a result, in the

most general case the optimization problem has the form:

min & /)\-dS — /<@,ﬁs>ds - / O(p) - dp.
S S inter(S)
(12)

min <5 /)\-dS _ /(@,ﬁs>d8 (11)
S S

where{, } is a vector field representing data, asig)(

The exact value of determines the strength of the mem-
brane prior and may be chosen according to the sampling o
density. If sampling density varies significantly over differ- 4- EN€rgy optimization
ent parts of the true surface, a better approach is based on |, [19, it was shown that global minima of geomet-
spatially varyingA = A(p) proportional to some estimate of ¢ gyrface functionals combining area, flux, and volumet-
local data sampling density. In our experiments,.however, fic potentials as ini2) can be efficiently computed via a
constant\ gave good result and we used constann all simple graph-cut. A typical graph construction is shown
experiments (unless noted otherwise). o in Figure8(a). Normally, neighboring pixels are connected

The optimization of the functionall() maximizes the ity n-links The cost of n-links severed by a cut repre-
number of collected data points while minimizing the area, ggnts length (or area in 3D) of the boundary. Pixels are also
thus handling noise and outliers in the initial data, see Fig- connected to the terminals and 7' via t-links. The cost
ure 7(a). However, if data points are sampled at distances uf ¢ |inks represents volumetric potentials. Divergence of a

much sparser than each point's “support’, see Figiie, yector field in @) is an example of volumetric potential that
then the membrane prior may produce inconsistent results;an pe represented by weighted t-links either to the source
for all choices of fixed\. It is unclear if spatially varying\ (positive divergence) or to the sink (negative divergence).

can solve the problem. Potentially, one may try combining

our flux-based data-fit term with a regularization functional 4.1, Global optimization via subgraphs

similar to (2) where value of spatially varying regulariza- o .

tion parameten could be set according to the distance to ~ AS Shown in Figured(a), the data (or non-zero t-links)

the nearest facet on the data points’ Delaunay graph. may concentrate in a very small subset of the domain of in-
An alternative and probably better approach is to use t€rest. ltmay look good enough to consider optimization in

a low-curvature gtiff membrang prior instead of a low- & band containing all the data, but this converts graph-cut

surface élastic membraneprior. The corresponding varia- N0 @ local optimization technique (like level-sets). As was

tional models are known. In the context of global graph-cut Shown in Figure2, this makes surface reconstruction very

optimiz_ation it_ might b_e possible to incorporate low Curva- — epor each range scan, the space between the scan surface and the scan-
ture priors using N-cliques but, to the best of our knowl- neris likely to be emptylines of sigh.
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sensitive to initial guess. Yet, in cases like one in Figi{eg
it seems ridiculous to do global optimization by building a
huge 3D grid in the whole domain. The natural question is
whether is it possible to guarantee global optimality while
doing computations on a small subgraph. The lemma below
demonstrates a condition that has such a guarantee. Our op-
timization algorithm is a natural consequence of this lemma.
We compute an optimal cut on a subgraph and then adjust
the subgraph until the conditions in the lemma are met.

We will use the following definitions. Consider subgraph (a) Grid graphz (b) Partitioning of nodes
(a band)G .., of graphG that contains only a subset of the Figure 8. A typical grid graph in computer vision (a). Pixels corre-
nodes onG and both terminalss andT. Edges connect-  spond to nodes. See lemma formulation for other details. Global
ing any pair of vertices i@, are the same as edges con- optimality lemma assumes partitioning of graph nodes intq sets
necting them inG. We call two subgraphdisjoint if their Gr, Gs,andB = Bs U Br (b). Note thatzr does not contain
node sets do not intersect (except for terminal noflesd t-links to source andrs does not contain t-links to sink.
T). We also say that two disjoint subgraphs (or simply non-
intersecting node subsets) andG, areconnectediif there 1 N
is a pair of nodes; € G andny € G, connected with an ~ » ‘\ -

X r

edge inG.

Global optimality lemma: LetGg, Gr, andB be dis-
joint subgraphs of7 such that their union contains all nodes
in G. Assume that:

1. Nodes inG g do not have (non-zero) t-links .

4

2. Nodes inG7 do not have (non-zero) t-links t8.

(a) Divergence of v, } (b) Global minima inR?

Figure 9. Our algorithm can take advantage of narrow concen-
Consider a minimal cUtBs, Br] on B separating its nodes tration of data points. Image (a) shows divergence of a vector
into set By connected to sink and sés connected to field representing “Bunny” data. While our algorithms guaran-
source. IfBg is disconnected front and By is discon- tees global optima in the whole domain, it can often find it while
nected fromG (see Figdb), then[Gs U Bs, G U By working on a relatively small subgragin (b).

is a minimal cut on7 (thus, the minimal cut ot is found

directly from the computations done within its subgraph ) .

Proof. The proof uses the standard terminology from G7, and subgraph(narrow bandj. Alternatively, if our
network flows theory and the Ford-Fulkerson theorem (min- 9raph is embedded in 3D space and the initialization is
imal cut/maximum flow duality) 17]. We will also use the ~ 9iven by some shap#,, one may creaté&'r from the nodes
corollary of the theorem stating that if all edges that are cut €Xterior toSo, G's from the nodes interior t§,, andB from
by some cut are saturated by some (feasible) flow than thdhe nodes near the shape surface. The following algorithm

3. Gr andGg are not connected.é. separated by).

cut is minimal and the flow is maximal. computes the globally minimal cut @i using such initial-
Consider a cufGs U Bs, Gr U Br] in graphG and a ization. (The final result is independent of it!)

cut[Bg, Br] in subgraphB. Due to adjacency conditions, On the first step, we add t8 all nodes inG's with non-

they cut the same set of edges, which we debtéet us zero t-links to the sink and all nodes @ with non-zero

prove, that the cuiG's U Bs, G U Br] is minimal. t-links to the source. Such subgraphs, G, and B meet
Consider the maximal flowF in B. Due to the Ford-  the first three conditions of the lemma. We compute a min-

Fulkerson theorem this flow saturates all edge§'inAlso, imum s/t cut inB. If the min-cut inB satisfied the last con-

this flow is feasible irG (sinceB is a subgraph iid&). dition of the lemma, we have found the globally minimal

Therefore, for cuiGs U Bs, G U Br] in G all severed ~ cut and, hence, stop. If obtained componelitsand By
edges are saturated by a feasible flow. The aforementionedlave nodes connected to the “wrong” inactive component
corollary implies that the cut is minimal. O (Gt for Bs andG's for Br) then the subgraph is dilated

Our lemma suggest an efficient algorithm that can take near these nodes. Then we iterate until a global minima is
advantage of the banded structure of the data (t-links) with-found. SinceB3 grows monotonically at each step, the pro-
out loosing the global optimality of the cut. cess converges.

Algorithm: assume that we are given a network graph  The number of iterations may be larged dozens). It
G with some initial segmentation/partitioning into séts, is important, therefore, that the maximum flow computed in
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B on the previous iteration is a feasible flow for the next
iteration. Thus, each iteration has to do only small update:
of the flow to get the maximum flow, which is much faster
then computing maximum flow from scratch.

This algorithm always yields the globally minimal cut.
However, the size of3 and the number of iterations de-
pends on the accuracy of the initialization. This behaviour
is different from the local optimization methods, where both
result and consumed resources depend on the accuracy
initialization, see Figur@. Note, although we used level
sets to get the results in Figug$c), any other local op-
timization method (inc. snakes, banded graph-cut) would
perform similarly.

Hierarchical algorithm: the proposed algorithm can be
used within a hierarchical strategy. Indeed, the result com-
puted using downsampled data can be used as a good initialtional iterations updating the narrow band and the minimal
ization on the higher level of hierarchy, which is a common cut (rest of step 3). Here, a) and c) takes very small amount
approach in computer vision. What is also important, is that of time compared to b).
the shapes of the subgraph which our algorithm creates
at different resolutions are also similar. 5. Experimental evaluation

We assume that we can compute t-link and n-link ca-
pacities for the grids at different resolutions. One way to  This section presents our experimental results based on
do this is to recall that these capacities are motivated byhierarchical algorithm from the previous section, which em-
the continuously-formulated geometric functional. A more Ploys the popular min-cut/max-flow algorithm frori fas a
general and simple strategy, which we actually use, is tosubroutine. In general, our global optimization algorithm
downsample the t-links and n-links by summation, i.e. con- pProduced watertight meshes of low genus. In the cases

(a) Low-res. graph-cut (b) Sub-pixel smoothing
Figure 10. Extracting subvoxel resolution isosurfaces via level-
sets (b) from binary segmentation on a grid (a). To emphasize the
smoothing effect, we used a low-resolution grid in this example.

struct a pyramid of n-links and t-links. when our method produced several connected components,
The following algorithm computes the globally minimal We left only the largest, due to the prior knowledge of shape
cut on the grid of resolutionz: x ny x nz: connectivity. To extract isosurfaces from binary segmenta-

tion of discrete grids without aliasing artifacts, we used a
modification of the method ir’[/] whereconstrained level-
setssmooth a surface on subvoxel level for better 3D render-
ing, see Figl0. Our modification applies such constrained

—

1. Compute the shap®, /4 as a result of minimal cu
at full grid at resolutiomz/4 x ny/4 x nz/4.

2. Compute the minimal cut at the resolution /2 x level-sets approach to our own functiona®)’.
ny/2 x nz/2, using the shap8, /, as initialization The numerical details of our algorithm’s performance
for our narrow band algorithm. L&t /2, G112, in the experiments are summarized in talle The peak
andB, /, be the network graph components on con- RAM allocation size for all models was 1.5-2.5 GB. Note,
vergence. that most of these experiments would demand prohibitively

large amount of memory being run at the same resolutions

3. Compute the minimal cut at full resolutiomx x with full min-cut/max-flow.

ny x nz, using the “upsampled” versions 6fg; /5,
Gr1/2, and By, as initialization for our narrow

band algorithm, 5.1. Fitting to range data

In this subsection, we present the result of our method on
) ) ) the range scan datasets from Stanford 3D Scanning Repos-
Typically, we observe 10-20 iterations on step 2, and 2-jtory. These well known datasets contain 10-112 registered
3 iterations on step 3. However, the vast majority of time yange scans per dataset. Each range scan was treated simply
is spent at single graph-cut computation on the starting it- 55 g collection of 3D points. To demonstrate the robustness
eration of step 3. Thus, such algorithm has a very small of our method to orientation estimation errors, we used a
computation overhead compared with a single minimal cut single orientation vector (corresponding to scan viewing di-
computation in a narrow band. In other words, the algo- rection) for all points in the scan. We also used coarse line-

rithm acts as followsa) automatically chooses the shape of  4f_sight information near the legs of Buddha for correct hole
the narrow band (steps 1,B) computes the minimal cut in

a narrow band (beginning of step 3), arjanakes few addi- 7Using our own functional was suggested by Olivier Juan
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Figure 11. Our results on the range scan datasets from the Stanford Repository using coarse orientation estimates (one direction per scan).
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Poissonl7]

Poisson {7] Flux (ours) Flux (ours)

' - f " - R \ ’ s
From points with weak orientation (direction to scanner) From points with good estimates of surface normals

Figure 12. Comparison of our method with Poisson surface reconstruction algorithnBpth methods use surface orientation informa-

tion. Two images on the right show that both methods work well when points come with accurate estimates of surface normals (here we
used surface normals generated by VRIP reconstruciidih [Two images on the left show the results obtained when data points had only
weak orientation information (direction towards the scanner) clearly demonstrating that our flux-based approach is much less sensitive to
accuracy of surface orientation information.

Scene Grid size Band size Time
Bunny 551x544x428(6) 3.72% 61.7
Dragon 602x425x269(6) 9.61% 62.9
Dragon(VRIP) 901x637x403(6) 3.06% 47.%
Armadillo 601x635x501(6) 2.23% 70.7
Buddha 377x914x377(6) 10.75% 1269.9
Temple Full  452x704x332(6) 10.37% 3595
Temple Ring 451x707x331(6) 11.91% 640/7
Temple Sparse 275x427x202(26) 21.92% 1116.1
Dino Full  252x300x253(26) 20.59% 629.3
Dino Ring  251x300x253(26) 21.31% 1038.2 7 \ 3
Dino Sparse  252x300x253(26) 21.68%  667.3 Figure 13. Our results (right) on the pruned Stanford Armadillo
Table 1. Minimal cut stats for the models in subsectibriss.2. range scans data (left). 98% of points were removed from the left
Neighborhood system size is shown in brackets. The fourth col- Part thus creating 50-to-1 difference in density.
umn contains the percentage of all nodes that were included in the
subgraphB on convergence. Time is given in seconds.

5.2. Fitting to incomplete stereo data

Recently, a number of multiview reconstruction methods

filling of a large hole. Otherwise, occupancy data were not have been proposed that produce highly-accurate "quasi-

used. The results for all datasets are shown in Eig. dense” output, leaving holes where the stereo correspon-
dence cannot be established [ 14, 15. Our method can

We also compared the results of our method with Pois- pnost-process such outputs turning them into consistent, wa-
son surface reconstruction recently proposedifi[There,  tertight meshes, while preserving their high level of details.
it was demonstrated to compare favourably to several other Thus, we considered incomplete meshes produced by
state-of-the-art methods. For a less challenging dataset with,, \1tview reconstruction method {] on Middlebury mul-
accurate normal orientations it produced the results equallyy iew stereo page datasets]. We used the vertices as
good to ours (Figurd2, _”_ght two images). Howeyer, It input points to our algorithms with the normals estimated
was unable to handle original raw scans dataset with Coarsg, |ocal mesh structure. In order to perform the hole fill-

orlenktj?tlon esltlma_tes, whle][teas our method produced a reag,  in ambiguous cases, we used the occupancy information
sonable results (Figure?, left two images). based on the coarse silhouette intersection.

We also tested the ability of our approach to handle large  We performed the evaluation on 6 datasets (a group of
variations in sampling density. To do that, we removed 98% three for dino model, and another group of three for tem-
of points from the right half of Armadillo and then applied ple model). Originally, within each group the multiview
our method. With the use of non-uniform Euclidean regu- datasets differed by the number of images. Therefore, the
larization, our method was able to handle such 50-to-1 dif- meshes produced by.{] differ by the size of the holes
ference in sampling density gracefully (Figur8). and by the amount of noise and outliers. Also, the sil-
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Temple Full Temple Ring Temple Sparse Dino Full Dino Ring Dino Sparse

0.42mm 98.0% 0.61mm 86.2% 0.87mm 56.6% 0.56mm 80.0% 0.46mm 57.8% 0.56mm 26.0%

0.42mm 99.7% 0.54mm 99.7% 0.95mm 93.2% 0.52mm 99.0% 0.64mm 95.9% 1.22mm 88.8%

Figure 14. Shape fitting to incomplete meshes on six Middlebury multiview stereo datasets. Top — two views of the results oéGoesele

al method [L4], bottom — the same views for the watertight shapes fitted to those results using our method. First numbers are the accuracy
measures (90% of the surface lies within this distance from the ground truth). Second numbers are completeness measures (percentage of
the ground truth that lies within 1.25 mm from the surface).

houette intersection results for ‘sparse’ and ‘ring’ datasets our method significantly improved the completeness of the
are much coarser approximations to real surface then formeshes, while the accuracy of the reconstructions remained
“full” datasets. The input (results oflf]) and the out- on par with the input meshes.

put of our method, along with statistical measurements of

similarity with ground truth are shown on Figuiel. As

both visual inspection and statistical measurements verify,



V. Lempitsky and Y. Boykov, University of Western Ontario, CS Tech.Rep. # 679, ISBN: 978-0-7714-2592-9, Feb. 7, 2007

Acknowledgements

Our research benefited from discussions with Alexander
Hornung and Leif Kobbelt (RWTH Aachen) who shared [12]

their “monkey” dataset as well as their results. Michael

Goesele (University of Washington) kindly provided the re- [13]

sults of [L4] (incomplete Temple and Dino models). Olivier
Juan (UWO) suggested reusing the same surface func-

tional at the last stage of our method when we run con-
strained level-sets to extract our surfaces with subvoxel ac-[14]

curacy. Discussions with Andrew Delong (UWO) and his

suggestions helped to clarify many points. John Barron [15]

(UWO) helped by sharing his insights on related optical
flow problems. We also thank Daniel Scharstein (Middle-
bury College), Brian Curless (University of Washington),
Steven Seitz (University of Washington), and other main-
tainers of the Middlebury multiview stereo database for

creating the datasets as well as for the statistical evalua-

p.14

[11] Y. Duan, L. Yang, H. Qin, and D. Samaras. Shape recon-

struction from 3d and 2d data using pde-based deformable
surfaces. IFECCV'04(lll), pages 238-2514

L. Ford and D. Fulkerson.Flows in Networks Princeton
University Press, 1962

Y. Furukawa and J. Ponce. Carved visual hulls for image-
based modeling. IEuropean Conference on Computer Vi-
sion (ECCV) volume |, pages 564-577, Graz, Austria, May
2006.4

M. Goesele, B. Curless, and S. Seitz. Multiview stereo revis-
ited. INCVPR’06(Il), pages 2402-2409.2, 13, 14

M. Habbecke and L. Kobbelt. Iterative multi-view plane fit-
ting. In VMV, pages 73-80, 2006.2

[16] A. Hornung and L. Kobbelt. Robust reconstruction of wa-

[17]

tion of our results and designing a custom-made web-page
(http:/ivision.middlebury.edu/mview/2006-lempitsky/

References

[1] J. Barron, D. Fleet, and S. Beauchemin. Performance of op-

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

tical flow techniqueslinternational Journal of Computer Vi-
sion (IJCV) 12(1):43-77, 19944

Y. Boykov and V. Kolmogorov. Computing geodesics and
minimal surfaces via graph cuts. IB6CV’03(l), page 26.1,
2,4,5

Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. IEEE TPAMI 26(9):1124-1137, 2004.0

Y. Boykov, V. Kolmogorov, D. Cremers, and A. Delong. An
integral solution to surface evolution PDEs via geo-cuts. In
European Conference on Computer Vision (ECGMJume

Ill, pages 409-422, Graz, Austria, May 2005.

Y. Boykov and V. Lempitsky. From photohulls to photoflux
optimization. INBMVC’06(lll), pages 1149-1158\, 6

A. Bruhn, J. Weikert, and C. Schnorr. Lukas/Kanade meets
Horn/Schunck: Combining local and global optic flow meth-
ods. International Journal of Computer Vision (IJCV)
61(3):211-231, 20054

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3d objects with radial basis functions.
In SIGGRAPH '01pages 67—764

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active con-
tours. International Journal of Computer Visio22(1):61—
79,1997.5

L. Cohen and I. Cohen. Finite element methods for active
contour models and balloons from 2-D to 3-D.GVPR’92
pages 592-5981

B. Curless and M. Levoy. A volumetric method for build-

ing complex models from range images. SIGGRAPH'96
pages 303-3124, 5,12

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]

[29]

tertight 3d models from non-uniformly sampled point clouds
without normal information. IfEurographics Symposium on
Geometry Processing’Qfages 41-502, 3, 4, 5

M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. IrEurographics Symposium on Geometry
Processing’06pages 61-704, 12

R. Kimmel and A. M. Bruckstein. Regularized Laplacian
zero crossings as optimal edge integratolsternational
Journal of Computer Visiarb3(3):225-243, 2003

V. Kolmogorov and Y. Boykov. What metrics can be approx-
imated by geo-cuts, or global optimization of length/area and
flux. In ICCV’'05(), pages 564-5712, 4, 6, 8

V. Kolmogorov and C. Rother. Minimizing non-submodular
functions with graph cuts - a reviewMicrosoft Research,
Cambridge, UK, tech. rep. MSR-TR-2006-12006 (to ap-
pear in PAMI in 2007)5

M. Lhuillier and L. Quan. Quasi-dense reconstruction from
image sequence. BCCV, pages 125-139, 20022

H. Lombaert, Y. Sun, L. Grady, and C. Xu. A multilevel
banded graph cuts method for fast image segmentation. In
ICCV'05, pages 259-26%3

Middlebury Multiview Stereo
http://vision.middlebury.edu/mviewa.2

S. Osher and J. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on the Hamilton-Jacobi
formulation. Journal of Computational Physic§9:12-49,
1988.4

P. Savadjiev, F. P. Ferrie, and K. Siddigi. Surface recovery
from 3d point data using a combined parametric and geo-
metric flow approach. IEMMCVPR'03, pp. 325-3404, 5,

Page.

A. Vasilevskiy and K. Siddigi. Flux maximizing geometric
flows. PAMI, 24(12):1565-1578, December 20@2.

R. Whitaker. Reducing aliasing artifacts in iso-surfaces of
binary volumes. pages 23-320

R. Whitaker. A level-set approach to 3d reconstruction from
range datalJCV, 29(3):203-231, 19981, 5

H. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruc-
tion using the level set method. MLSM '01, p. 194 4,


http://vision.middlebury.edu/mview/2006-lempitsky/

