Mignotte's factor bound

Definition 6   Let $ f = {\Sigma}_{0 \leq i \leq n} \ f_i x^i$ be a univariate polynomial over $ {\mbox{${\mathbb{C}}$}}$ . The 2-norm of $ f$ is defined by

$\displaystyle {\Vert f \Vert}_2 \ = \ \left( {\Sigma}_{0 \leq i \leq n} \ \vert f_i \vert^2 \right)^{1/2}$ (72)

where $ \vert z\vert$ denotes the square root of the product of $ z$ by its conjugate $ \overline{z}$ .

Remark 9   Given $ f = {\Sigma}_{0 \leq i \leq n} \ f_i x^i$ we shall compute a bound $ B$ such that for any $ h \in {\mbox{${\mathbb{C}}$}}[x]$ we have

$\displaystyle h \ \mid \ f \ \ \ \ \Rightarrow \ \ \ \ {\Vert h \Vert}_2 \ \leq \ B$ (73)

One could hope that $ B = {\Vert f \Vert}_2$ would work. Unfortunately there are some counter-examples. Though they are very rare, there are infinitely many of them.
(2) -> factor(x^105 - 1) 

   (2)
              2           4    3    2           
     (x - 1)(x  + x + 1)(x  + x  + x  + x + 1)

  *  
      6    5    4    3    2
    (x  + x  + x  + x  + x  + x + 1)

  *
       8    7    5    4    3
     (x  - x  + x  - x  + x  - x + 1)
  *
       12    11    9    8    6    4    3
     (x   - x   + x  - x  + x  - x  + x  - x + 1)
  *
        24    23    19    18    17    16    14    13    
       x   - x   + x   - x   + x   - x   + x   - x   
      
        12    11    10    8    7   6    5
     + x   - x   + x   - x  + x - x  + x  - x + 1

  *
        48    47    46    43    42     41    40 
       x   + x   + x   - x   - x   - 2x   - x   

         39    36    35    34    33
      - x   + x   + x   + x   + x
     
        32    31    28    26    24    22    20 
      + x   + x   - x   - x   - x   - x   - x   

        17    16    15    14    13
      + x   + x   + x   + x   + x

        12    9    8     7    6    5    2
     + x   - x  - x  - 2x  - x  - x  + x  + x + 1
                        Type: Factored Polynomial Integer
Worse than that: for every $ B > 0$ there exist infinitely many $ n$ such that there exists a polynomial $ h$ dividing $ x^n - 1$ and satisfying $ {\Vert h \Vert}_2 > B$ . See [GG99] for more details.

Lemma 3   For $ f \in {\mbox{${\mathbb{C}}$}}[x]$ and $ z \in {\mbox{${\mathbb{C}}$}}$ we have

$\displaystyle {\Vert (x -z) f \Vert}_2 \ = \ { \Vert (\overline{z} \, x -1) f \Vert}_2$ (74)

Proof. Let $ f = {\Sigma}_{0 \leq i \leq n} \ f_i x^i$ and define $ f_{-1} = f_{n+1} = 0$ . We calculate

\begin{displaymath}\begin{array}{rcl} {\Vert (x -z) f \Vert}_2^2 & = & {\Sigma}_...
... & = & { \Vert (\overline{z} \, x -1) f \Vert}_2 \\ \end{array}\end{displaymath} (75)

$ \qedsymbol$

Definition 7   Let $ z_1, \ldots, z_n$ be the complex roots of the polynomial

$\displaystyle f \ = \ {\Sigma}_{0 \leq i \leq n} \ f_i x^i \ = \ f_n \ {\Pi}_{1 \leq i \leq n} \ (x - z_i)$ (76)

We define the measure of the polynomial $ f$ by

$\displaystyle M(f) \ = \ \mid f_n \mid \ {\Pi}_{1 \leq i \leq n} \ {\max}(1,\mid z_i \mid)$ (77)

Remark 10   For $ f,g \in {\mbox{${\mathbb{C}}$}}[x]$ the following statements are easy to prove:
  1. $ M(f) \ \geq \ {\rm lc}(f)$ .
  2. $ M(f g) \ = \ M(f) \, M(g)$ .
The following theorem of Landau (1905) relates $ M(f)$ and $ {\Vert f \Vert}_2 $ .

Theorem 4 (Landau)   For any $ f \in {\mbox{${\mathbb{C}}$}}[x]$ we have

$\displaystyle M(f) \ \leq \ {\Vert f \Vert}_2$ (78)

Proof. We arrange the roots $ z_1, \ldots, z_n$ of $ f$ such that

$\displaystyle \mid z_1 \mid, \ldots, \mid z_k \mid \ > \ 1 \ \ \ \ {\rm and} \ \ \ \ \mid z_{k+1} \mid, \ldots, \mid z_n \mid \ \leq \ 1$ (79)

Therefore

$\displaystyle M(f) \ = \ \mid f_n \cdot z_1 \cdots z_k \mid$ (80)

Let

\begin{displaymath}\begin{array}{rcl} g & = & f_n \ {\Pi}_{1 \leq j \leq k} (\ov...
...j \leq n} (x - z_j) \\ & = & g_n x^n + \cdots + g_0 \end{array}\end{displaymath} (81)

We calculate

\begin{displaymath}\begin{array}{rcl} {M(f)}^2 & = & { \mid f_n \cdot z_1 \cdots...
... - z_k) \Vert }_2^2 \\ & = & {\Vert f \Vert}_2^2 \\ \end{array}\end{displaymath} (82)

where we made repeated use of Lemma 3. $ \qedsymbol$

Remark 11   Given $ f = {\Sigma}_{0 \leq i \leq n} \ f_i x^i$ it is convenient to use the $ 1$ -norm

$\displaystyle {\Vert f \Vert}_1 \ = \ {\Sigma}_{0 \leq i \leq n} \ \mid f_i \mid$ (83)

and the $ \infty$ -norm

$\displaystyle {\Vert f \Vert}_{\infty} \ = \ {\max}_{\ 0 \leq i \leq n}(\mid f_i \mid)$ (84)

The following inequalities are classical.

$\displaystyle {\Vert f \Vert}_{\infty} \ \leq \ {\Vert f \Vert}_2 \ \leq \ {\Ve...
...and} \ \ \ \ {\Vert f \Vert}_2 \ \leq \ (n+1)^{1/2} \, {\Vert f \Vert}_{\infty}$ (85)

Theorem 5   Let $ f = {\Sigma}_{0 \leq i \leq n} \ f_i x^i$ and $ h = {\Sigma}_{0 \leq i \leq m} \ h_i x^i$ be two polynomials such that $ h$ divides $ f$ . Then we have

$\displaystyle {\Vert h \Vert}_2 \ \leq \ {\Vert h \Vert}_1 \ \leq \ 2^m \, M(h) \ \leq \ \left\vert \frac{h_m}{f_n} \right\vert \, 2^m \, {\Vert f \Vert}_2$ (86)

Proof. Let us write

$\displaystyle h \ = \ h_n \ {\Pi}_{1 \leq i \leq m} \ (x - u_i)$ (87)

where $ u_1, \ldots, u_m \in {\mbox{${\mathbb{C}}$}}$ are the roots of $ h$ and thus among the roots of $ f$ . Observe that the coefficient $ h_i$ of $ h$ (in the term of degree $ i$ ) So for $ i = 0 \cdots m$ we have

$\displaystyle \mid h_i \mid \ \leq \ \left( \begin{array}{c} m \\ i \end{array} \right) M(h)$ (88)

This implies

\begin{displaymath}\begin{array}{rcl} {\Vert h \Vert}_1 & = & {\Sigma}_{0 \leq i...
...t) \\ & = & M(h) \ (1 + 1)^m \\ & = & M(h) \ 2^m \\ \end{array}\end{displaymath} (89)

Now observe that the measures of $ h$ and $ f$ satisfy

$\displaystyle M(h) \ \leq \ \left\vert \frac{h_m}{f_n} \right\vert M(f)$ (90)

Relations (89) and (90) together we Theorem 4 leads to

$\displaystyle {\Vert h \Vert}_2 \ \leq \ {\Vert h \Vert}_1 \ \leq \ M(h) \ 2^m ...
...) \ 2^m \ \leq \ \left\vert \frac{h_m}{f_n} \right\vert {\Vert f \Vert}_2 \ 2^m$ (91)

The theorem is proved. $ \qedsymbol$

Corollary 4 (Mignotte's bound)   Let $ f,g,h \in {\mbox{${\mathbb{Z}}$}}[x]$ be univariate polynomials with degrees $ n, m, k$ respectively. If the product $ g \, h$ divides $ f$ in $ {\mbox{${\mathbb{Z}}$}}[x]$ then we have

$\displaystyle {\Vert g \Vert}_{\infty} \, {\Vert h \Vert}_{\infty} \ \leq \ {\V...
...{\Vert f \Vert}_2 \ \leq \ (n + 1)^{1/2} \, 2^{m+k} \, {\Vert f \Vert}_{\infty}$ (92)

Proof. The first, the second and the fourth above inequalities follow directly from the classical relations between the norms $ { \Vert \ \cdot \ \Vert }_1$ , $ { \Vert \ \cdot \ \Vert }_2$ and $ { \Vert \ \cdot \ \Vert }_{\infty}$ given in Remark 11. So the only inequality to prove is

$\displaystyle {\Vert g \Vert}_1 \, {\Vert h \Vert}_1 \ \leq \ 2^{m+k} \, {\Vert f \Vert}_2 .$ (93)

From Theorem 5 (that essentially relates the $ 1$ -norm of a polynomial with its measure) we have

$\displaystyle {\Vert g \Vert}_1 \ \leq \ 2^m \, M(g) \ \ \ \ {\rm and} \ \ \ \ {\Vert h \Vert}_1 \ \leq \ 2^k \, M(h).$ (94)

From the elementary properties of the measure of a polynomial given in Remark 10 we have

$\displaystyle M(g) \, M(h) \ \leq \ M(f).$ (95)

By virtue of Landau's inequality (Theorem 4) we have

$\displaystyle M(f) \ \leq \ {\Vert f \Vert}_2.$ (96)

Putting all these relations together leads to

$\displaystyle {\Vert g \Vert}_1 \, {\Vert h \Vert}_1 \ \leq \ 2^{m+k} \, M(g) \, M(h) \ \leq \ 2^{m+k} \, M(f) \ \leq \ 2^{m+k} \, {\Vert f \Vert}_2.$ (97)

The corollary is proved. $ \qedsymbol$

Remark 12   Applying Corollary 4 to $ g = 1$ and keeping $ f$ , $ g$ as before leads to the following bound for every coefficient of every factor $ h$ of $ f$ .

$\displaystyle {\Vert h \Vert}_{\infty} \ \leq \ (n + 1)^{1/2} \, 2^n \, {\Vert f \Vert}_{\infty}$ (98)

Marc Moreno Maza
2008-01-07