Exercise 3.

Let $ m \in {\mbox{${\mathbb{Q}}$}}[x]$ be a non-constant polynomial of degree $ n$ . Let $ R = Q[x] / \langle m \rangle$ be the set of the residue classes modulo $ m$ .
1.
Let $ p \in {\mbox{${\mathbb{Q}}$}}[x]$ be a polynomial. How many elements are there in the residue class $ \overline{p}$ of $ p$ modulo $ m$ with degree less than $ n$ ?
2.
Explain why we can view each element of $ R$ as a vector of $ n$ coordinates in $ {\mbox{${\mathbb{Q}}$}}$ .
Given two polynomial $ c$ and $ a$ in $ {\mbox{${\mathbb{Q}}$}}[x]$ we want to decide whether there exists a polynomial $ f$ such that we have $ c \equiv a f \ \mod{ m}$ . For instance, with $ m = x^3 - 1$ , $ c = x - 1$ and $ a = x^2 - 1$ , one solution is $ f = x^2 + 1$ . Indeed, we have $ (x^2 + 1)(x^2 - 1) = x^4 - 1 \equiv x - 1 \mod{x^3 - 1}$ . (Working modulo $ x^3 - 1$ means replacing every occurrence of $ x^3$ by $ 1$ .)
3.
Assume first that $ {\gcd}(a,m) = 1$ . Explain why such a polynomial $ f$ exists and is unique.
4.
Now, assume that $ {\gcd}(a,m) = g$ where $ g$ is a non-constant polynomial. Indicate briefly a strategy for solving our problem in this case.
5.
Solve our problem for the particular $ m = x^3 - 1$ , $ c = x - 1$ and $ a = x^2 + 1$ .


\fbox{
\begin{minipage}{13 cm}
\begin{enumerate}
\item[1.] Only one! The remaind...
...\mod{m}.$
Hence $f = x^2 - 1$\ is the solution!
\end{enumerate} \end{minipage}}

Marc Moreno Maza
2008-01-31